Suppr超能文献

酿酒酵母从甘氨酸合成丝氨酸以及将甘氨酸用作唯一氮源的遗传学研究。

Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae.

作者信息

Sinclair D A, Dawes I W

机构信息

School of Biochemistry and Molecular Genetics, University of New South Wales, Australia.

出版信息

Genetics. 1995 Aug;140(4):1213-22. doi: 10.1093/genetics/140.4.1213.

Abstract

Saccharomyces cerevisiae can grow on glycine as sole nitrogen source and can convert glycine to serine via the reaction catalyzed by the glycine decarboxylase multienzyme complex (GDC). Yeast strains with mutations in the single gene for lipoamide dehydrogenase (lpd1) lack GDC activity, as well as the other three 2-oxoacid dehydrogenases dependent on this enzyme. The LPD1 gene product is also required for cells to utilize glycine as sole nitrogen source. The effect of mutations in LPD1 (L-subunit of GDC), SER1 (synthesis of serine from 3-phosphoglycerate), ADE3 (cytoplasmic synthesis of one-carbon units for the serine synthesis from glycine), and all combinations of each has been determined. The results were used to devise methods for isolating mutants affected either in the generation of one-carbon units from glycine (via GDC) or subsequent steps in serine biosynthesis. The mutants fell into six complementation groups (gsd1-6 for defects in conversion of glycine to serine). Representatives from three complementation groups were also unable to grow on glycine as sole nitrogen source (gsd1-3). Assays of the rate of glycine uptake and decarboxylation have provided insights into the nature of the mutations.

摘要

酿酒酵母能够以甘氨酸作为唯一氮源生长,并可通过甘氨酸脱羧酶多酶复合体(GDC)催化的反应将甘氨酸转化为丝氨酸。硫辛酰胺脱氢酶(lpd1)单基因突变的酵母菌株缺乏GDC活性,以及依赖该酶的其他三种2-氧代酸脱氢酶。细胞利用甘氨酸作为唯一氮源也需要LPD1基因产物。已确定LPD1(GDC的L亚基)、SER1(由3-磷酸甘油酸合成丝氨酸)、ADE3(从甘氨酸合成丝氨酸所需的一碳单位的胞质合成)的突变以及每种突变的所有组合的影响。这些结果被用于设计方法来分离在从甘氨酸生成一碳单位(通过GDC)或丝氨酸生物合成后续步骤中受到影响的突变体。这些突变体分为六个互补群(gsd1 - 6表示甘氨酸向丝氨酸转化缺陷)。三个互补群的代表也不能以甘氨酸作为唯一氮源生长(gsd1 - 3)。对甘氨酸摄取和脱羧速率的测定为突变的性质提供了见解。

相似文献

2
Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae.
J Biol Chem. 2000 Oct 6;275(40):30987-95. doi: 10.1074/jbc.M004248200.
4
Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae.
Mol Microbiol. 1996 Feb;19(3):611-23. doi: 10.1046/j.1365-2958.1996.419947.x.
8
Regulation of the yeast glycine cleavage genes is responsive to the availability of multiple nutrients.
FEMS Yeast Res. 2002 Mar;2(1):59-71. doi: 10.1111/j.1567-1364.2002.tb00069.x.
10
Cloning and characterization of the gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae.
J Gen Microbiol. 1987 Apr;133(4):925-33. doi: 10.1099/00221287-133-4-925.

引用本文的文献

1
Genome Sequence and Analysis of the Flavinogenic Yeast IST 626.
J Fungi (Basel). 2022 Mar 1;8(3):254. doi: 10.3390/jof8030254.
2
Mechanism-Driven Metabolic Engineering for Bio-Based Production of Free -Lipoic Acid in Mitochondria.
Front Bioeng Biotechnol. 2020 Aug 20;8:965. doi: 10.3389/fbioe.2020.00965. eCollection 2020.
3
Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation.
Int J Mol Sci. 2017 Mar 28;18(4):720. doi: 10.3390/ijms18040720.
5
A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae.
Biotechnol Biofuels. 2013 May 4;6(1):68. doi: 10.1186/1754-6834-6-68.
6
Metabolic basis for the self-referential genetic code.
Orig Life Evol Biosph. 2011 Aug;41(4):357-71. doi: 10.1007/s11084-010-9226-x. Epub 2010 Nov 6.
7
Mining metabolic pathways through gene expression.
Bioinformatics. 2010 Sep 1;26(17):2128-35. doi: 10.1093/bioinformatics/btq344. Epub 2010 Jun 29.
8
Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes.
Mol Cell Biol. 2008 Mar;28(5):1851-61. doi: 10.1128/MCB.01963-07. Epub 2007 Dec 17.

本文引用的文献

3
Escherichia coli K12 mutants defective in the glycine cleavage enzyme system.
Mol Gen Genet. 1983;192(1-2):15-20. doi: 10.1007/BF00327641.
4
Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site.
Cell. 1983 Apr;32(4):1279-86. doi: 10.1016/0092-8674(83)90309-4.
5
Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene.
Proc Natl Acad Sci U S A. 1980 Apr;77(4):2119-23. doi: 10.1073/pnas.77.4.2119.
6
Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
Biochim Biophys Acta. 1984 Nov 21;778(1):1-16. doi: 10.1016/0005-2736(84)90442-5.
7
Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine.
Arch Biochem Biophys. 1969 Jul;132(2):359-69. doi: 10.1016/0003-9861(69)90377-4.
8
Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces.
J Bacteriol. 1972 Jan;109(1):34-43. doi: 10.1128/jb.109.1.34-43.1972.
10
Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria.
Arch Biochem Biophys. 1986 Aug 1;248(2):626-38. doi: 10.1016/0003-9861(86)90517-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验