Garwicz D, Lindmark A, Gullberg U
Department of Medicine, Lund University, Sweden.
J Biol Chem. 1995 Nov 24;270(47):28413-8. doi: 10.1074/jbc.270.47.28413.
The neutral protease cathepsin G belongs to a family of hematopoietic serine proteases stored in the azurophil granules of the neutrophil granulocyte. To investigate the function of asparagine-linked carbohydrates in neutrophil serine proteases, we constructed a mutant cDNA, coding for human cathepsin G deficient of a functional glycosylation site, for use in a transgenic cellular model. Wild type and mutant cDNA were stably expressed in the rat basophilic/mast cell line RBL and in the murine myeloblast-like cell line 32D. Biosynthetic labeling, followed by immunoprecipitation, SDS-polyacrylamide gel electrophoresis, and fluorography, showed that carbohydrate-deficient cathepsin G was synthesized as a 29-kDa proform in both cell lines. The proform was proteolytically processed into a stable form with an apparent molecular mass of 27.5 kDa, indicating removal of the carboxyl-terminal prodomain. The mutant cathepsin G was enzymatically activated as determined by acquisition of affinity to aprotinin, a serine protease inhibitor. As for wild type cathepsin G, small amounts of the unprocessed form of the mutated enzyme were released from the cells, while the major part was transferred to a granular compartment as demonstrated by subcellular fractionation. Thus, neither processing leading to enzymatic activation nor granular sorting was obviously affected by the lack of oligosaccharides on the mutant cathepsin G. Our results therefore indicate that glycosylation is not essential for these processes. In addition to the previously utilized cell line RBL, we propose the 32D cell line as a suitable cellular model for transgenic expression of human neutrophil serine proteases.