Suppr超能文献

GapIII, a new brain-enriched member of the GTPase-activating protein family.

作者信息

Baba H, Fuss B, Urano J, Poullet P, Watson J B, Tamanoi F, Macklin W B

机构信息

Department of Psychiatry and Biobehavioral Sciences, UCLA Medical Center, USA.

出版信息

J Neurosci Res. 1995 Aug 15;41(6):846-58. doi: 10.1002/jnr.490410615.

Abstract

Ras GTPase-activating proteins (GAPs) are negative regulators of ras, which controls proliferation and differentiation in many cells. Ras GAPs have been found in a variety of species from yeast to mammals. We describe here a newly identified mammalian GAP, GapIII, which was obtained by differential screening of a rat oligodendrocyte cDNA library. GapIII putatively encodes a 834 amino acid protein with a predicted molecular weight of 96 kDa, which contains a consensus GAP-related domain (GRD). The protein encoded by this cDNA has high homology with Gap1m, which was recently identified as a putative mammalian homolog of Drosophila Gap1. These proteins contain three structural domains, an N-terminal calcium-dependent phospholipid binding domain, GRD, and a C-terminal PH/Btk domain. Because of the sequence homology and the structural similarities of this protein with Gap1m, we hypothesize that GapIII and Gap1m may be members of a mammalian GAP gene family, separate from p120GAP, neurofibromin (NF1), and IQGAP. To confirm the GapIII protein activity, constructs containing different GapIII-GRD domains were transformed into iral mutant yeast to determine their relative ability to replace IRA1 functionally. Constructs that contained essentially the full-length protein (all three domains), the GRD alone, or the GRD plus PH/Btk domain suppressed heat shock sensitivity of ira1, whereas constructs that contained the GRD with part of the PH/Btk domain had only a weak ability to suppress heat shock sensitivity. These results suggest that the GapIII GRD itself is sufficient to down-regulate ras proteins in yeast. Expression of GapIII mRNA (4.2 kb) was examined by Northern analysis and in situ hybridization. This mRNA was expressed at highest levels in the brain, where its expression increased with development. Lower levels of the mRNA were expressed in the spleen and lung. Among neural cells, GapIII mRNA was expressed in neurons and oligodendrocytes, but not in astrocytes. Interestingly, the expression pattern in brain is reminiscent of type 1 NF1 expression reported by Gutmann et al. (Cell Growth Differ in press, 1995). We propose that in addition to p120GAP and neurofibromin, the GapIII/Gap1m family may be important for modulating ras activity in neurons and oligodendrocytes during normal brain development and in particular in the adult brain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验