Miquelis R, Courageot J, Jacq A, Blanck O, Perrin C, Bastiani P
Laboratoire de Biochimie, URA 1455, Faculté de Médecine Nord, Marseille, France.
J Cell Biol. 1993 Dec;123(6 Pt 2):1695-706. doi: 10.1083/jcb.123.6.1695.
Previous experiments led us to speculate that thyrocytes contain a recycling system for GlcNAc-bearing immature thyroglobulin molecules which prevents these molecules from lysosomal degradation (Miquelis, R., C. Alquier, and M. Monsigny. 1987. J. Biol. Chem. 262:15291-15298). To confirm this hypothesis, the fate of GlcNAc-bearing proteins after internalization by thyrocytes was monitored and compared to that of fluid phase markers. Kinetic internalization studies were performed using 125I-GlcNAc-BSA and 131I-Man-BSA. We observed that the apparent intake rate as well as the amount of hydrolyzed GlcNAc-BSA are smaller than the corresponding values for Man-BSA. These differences were reduced by GlcNAc competitors (thyroglobulin and ovomucoid) or a weak base (chloroquine). Part of the internalized GlcNAc-BSA was released into the extracellular milieu at a higher rate and shorter half life (t1/2 = approximately 30 min) than the Man-BSA (t1/2 = approximately 8 h). Subcellular homing was first studied by cell fractionation after internalization using 125I-ovomucoid and 131I-BSA. During Percoll density gradient fractionation, endogenous thyroperoxidase was used to separate subsets of organelles involved in the biosynthetic exocytotic pathway. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation give rise to a shift in the density of organelles containing 3.5 times more ovomucoid than BSA. Discontinuous sucrose gradient showed that: (a) thyroperoxidase was colocalized with galactosyltransferase-contraining organelles in Golgi-rich subfractions; and (b) that at every time studied from 10 to 100 min, the ovomucoid/BSA ratio was higher in these organelles than in other subfractions. Finally we also observed that: (a) ovomucoid sequestered in the Golgi-rich subfraction incorporated [3H]galactose; and (b) that part of internalized ovomucoid was localized on the Golgi stacks as well as elements of the trans-Golgi, as revealed by immunogold labeling on ultrathin cryosections. These data prove that in thyrocytes GlcNAc accessible sugar moieties on soluble internalized molecules are sufficient to trigger their recycling via the Golgi apparatus.
先前的实验使我们推测,甲状腺细胞含有一个针对携带N-乙酰葡糖胺的未成熟甲状腺球蛋白分子的循环利用系统,该系统可防止这些分子被溶酶体降解(米凯利斯,R.,C. 阿尔基耶,和M. 蒙西尼。1987年。《生物化学杂志》262:15291 - 15298)。为了证实这一假设,我们监测了甲状腺细胞内化后携带N-乙酰葡糖胺的蛋白质的命运,并将其与液相标记物的命运进行了比较。使用125I-N-乙酰葡糖胺-牛血清白蛋白(125I-GlcNAc-BSA)和131I-甘露糖-牛血清白蛋白(131I-Man-BSA)进行了动力学内化研究。我们观察到,N-乙酰葡糖胺-牛血清白蛋白的表观摄取率以及水解量均小于甘露糖-牛血清白蛋白的相应值。这些差异通过N-乙酰葡糖胺竞争剂(甲状腺球蛋白和卵类粘蛋白)或弱碱(氯喹)而减小。内化的N-乙酰葡糖胺-牛血清白蛋白的一部分以比甘露糖-牛血清白蛋白更高的速率和更短的半衰期(t1/2 = 约30分钟)释放到细胞外环境中(t1/2 = 约8小时)。亚细胞归巢首先通过使用125I-卵类粘蛋白和131I-牛血清白蛋白内化后的细胞分级分离来研究。在Percoll密度梯度分级分离过程中,内源性甲状腺过氧化物酶被用于分离参与生物合成胞吐途径的细胞器亚群。在细胞分级分离前,在二氨基联苯胺(DAB)和过氧化氢(H2O2)存在下孵育细胞匀浆,导致含有比牛血清白蛋白多3.5倍卵类粘蛋白的细胞器密度发生变化。不连续蔗糖梯度显示:(a)甲状腺过氧化物酶与富含高尔基体的亚组分中含有半乳糖基转移酶的细胞器共定位;(b)在从10到100分钟的每个研究时间点,这些细胞器中的卵类粘蛋白/牛血清白蛋白比值均高于其他亚组分。最后我们还观察到:(a)隔离在富含高尔基体的亚组分中的卵类粘蛋白掺入了[3H]半乳糖;(b)如超薄冷冻切片上的免疫金标记所示,内化的卵类粘蛋白的一部分定位于高尔基体堆叠以及反式高尔基体元件上。这些数据证明,在甲状腺细胞中,可溶性内化分子上可及的N-乙酰葡糖胺糖部分足以触发它们通过高尔基体进行循环利用。