Lafon-Cazal M, Culcasi M, Gaven F, Pietri S, Bockaert J
CNRS UPR 9023, Montpellier, France.
Neuropharmacology. 1993 Nov;32(11):1259-66. doi: 10.1016/0028-3908(93)90020-4.
In this study, we analysed the implication of superoxide (O2-.) and nitric oxide (NO.) free radicals and their resulting product peroxynitrite (ONOO-) in the neuronal death induced by the activation of the glutamatergic receptor of the N-methyl-D-aspartate (NMDA) subtype using cultured cerebellar granule cells. The NOl donor SIN-1 (3-morpholinosydnonimine N-ethylcarbamide), at concentrations which produced a much higher guanylate cyclase activation (i.e. NO. concentration) than NMDA, was not neurotoxic and did not increase the NMDA-induced neuronal death. The absence of involvement of NO. in NMDA-induced neuronal death was confirmed by the ineffectiveness of L-NG-nitroarginine (L-Narg) as a neuroprotective compound. Electron paramagnetic resonance (EPR) experiments, using 5,5-dimethyl pyrroline 1-oxide (DMPO) as a spin trap, indicated that NMDA receptor stimulation led to the generation of O2-. from at least 15-30 min. The generation of O2-. by xanthine (XA)-xanthine oxidase (XO) induced a neuronal death similar to that of NMDA. XA-XO-induced neuronal death was suppressed by addition of either superoxide dismutase (SOD) plus catalase (CAT), or DMPO in the incubation medium. In contrast, NMDA-induced neuronal death was widely blocked by DMPO and other spin trap compounds, but not by SOD +/- CAT. XA-XO-induced neuronal death was not potentiated by SIN-1 indicating that ONOO- is not more toxic than O2-. in our neuronal model.