Suppr超能文献

Neuronal death induced by SIN-1 in the presence of superoxide dismutase: protection by cyclic GMP.

作者信息

Moro M A, Fernández-Tomé P, Leza J C, Lorenzo P, Lizasoain I

机构信息

Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense de Madrid, Spain.

出版信息

Neuropharmacology. 1998 Aug;37(8):1071-9. doi: 10.1016/s0028-3908(98)00104-x.

Abstract

The nitrovasodilator 3-morpholinosydnonimine (SIN-1) slowly decomposes to release both nitric oxide (NO) and superoxide (O2-) and thereby produces peroxynitrite (ONOO-), a powerful oxidant which has been proposed to mediate the toxic actions caused by NO. Indeed, ONOO has been shown to cause neuronal death and it has been proposed to occur in different disorders of the CNS such as brain ischaemia, AIDS-associated dementia, amyothrophic lateral sclerosis, etc. We have found that SIN-1 was only slightly toxic to 1-week-old rat cortical neurones in primary culture (LC50=2.5+/-0.5 mM). Superoxide dismutase (SOD; 100 U/ml) significantly increased SIN-1-induced toxicity, an effect that was enhanced in the presence of HbO2, abolished by catalase and accompanied by the formation of hydrogen peroxide (H2O2). We have also found that 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylate cyclase, enhances cell death induced by SIN-1 (0.2-0.5 mM) + SOD (100 U/ml) in a concentration-dependent way (EC50=0.073+/-0.004 microM). Simultaneously, ODQ inhibits the elevation of cyclic GMP concentrations induced by SIN-1 + SOD in cortical cells (IC50=0.022+/-0.014 microM). Finally, we have also shown that the cyclic GMP mimetic, 8-bromo-cyclic GMP reverses the potentiating effect induced by ODQ on SIN-1 + SOD-induced neuronal death and inhibits the neurotoxicity induced by H2O2 (100 microM). Taken together, these data suggest that H2O2 is the species responsible for the potentiation by SOD of SIN-1-induced cell death and that cyclic GMP elevations confer selective cytoprotection against this H2O2-mediated component of cell death.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验