Suppr超能文献

Compartmentation of glutamate and glutamine in the lateral cervical nucleus: further evidence for glutamate as a spinocervical tract neurotransmitter.

作者信息

Kechagias S, Broman J

机构信息

Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden.

出版信息

J Comp Neurol. 1994 Feb 22;340(4):531-40. doi: 10.1002/cne.903400406.

Abstract

Previous observations indicate that spinocervical tract terminals contain relatively high levels of glutamate. To examine whether these high glutamate levels are likely to represent a neurotransmitter pool or an elevated metabolic pool, the distributions of glutamate- and glutamine-like immunoreactivities were examined in adjacent immunogold-labeled sections of the lateral cervical nucleus. Spinocervical tract terminals were identified by anterograde transport of horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase conjugate from the spinal cord. Spinocervical tract terminals were found to contain significantly higher levels of glutamate-like immunoreactivity than other examined tissue compartments (large neuronal cell bodies, terminals with pleomorphic vesicles, astrocytes, and average tissue level). In contrast, the highest levels of glutamine-like immunoreactivity were detected in astrocytes. The different analyzed tissue elements formed three groups with respect to glutamate:glutamine ratios: one high ratio group including spinocervical tract terminals, a second group with intermediate ratios consisting of neuronal cell bodies and terminals containing pleomorphic synaptic vesicles, and a third low ratio group including astrocytes. Our findings indicate the presence of a compartmentation of glutamate and glutamine in the lateral cervical nucleus, similar to that postulated in biochemical studies of the central nervous system. The results also show that spinocervical tract terminals have high glutamate: glutamine ratios, similar to those previously observed in putative glutamatergic terminals in the cerebellar cortex. Thus, spinocervical tract terminals display biochemical characteristics that would be expected of glutamatergic terminals and the present findings therefore provide further evidence for glutamate as a spinocervical tract neurotransmitter.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验