Suppr超能文献

Synaptic morphology of substance P terminals on catecholamine neurons in the commissural subnucleus of the nucleus tractus solitarii in the rat.

作者信息

Chen I L, Cusick C G, Weber J T, Yates R D

机构信息

Department of Anatomy, Tulane Medical School, New Orleans, Louisiana 70112.

出版信息

Microsc Res Tech. 1994 Oct 1;29(2):177-83. doi: 10.1002/jemt.1070290216.

Abstract

The ultrastructure of substance P-containing nerve terminals synapsing on catecholamine neurons in the rat commissural subnucleus of the nucleus tractus solitarii (NTScom) was studied using a double immunocytochemical labeling technique. Although there were numerous tyrosine hydroxylase-immunoreactive (TH-I) somata present, substance P immunoreactive (SP-I) cell bodies were only occasionally found in the NTScom. At the light microscopic level, many SP-I terminals were seen closely associated with TH-I dendrites and somata. At the electron microscopic level, SP-I terminals synapsing on TH-I structures were also readily encountered. SP-I terminals contained small, clear, and predominantly spherical vesicles (32 +/- 4 nm diameter), as well as large dense-cored vesicles approximately 100 nm in diameter. Postsynaptic TH-I dendritic profiles of various calibers and somata were encountered. These postsynaptic TH-I structures often showed postsynaptic densities. The morphological features of the SP-TH synapses in the present study, that is, the size of synaptic vesicles and the presence of postsynaptic densities, are quite different from those of central carotid sinus afferent synapses reported in our previous study [Chen et al. (1992), J. Neurocytol., 21:137-147]. Therefore, most of the SP terminals of the SP-TH synapses in the NTScom appear not to originate from the carotid sinus afferents. SP-I second-order neurons of the carotid sinus afferent pathway [Chen et al. (1991), J. Auton. Nerv. Syst., 33:97-98] may be one of the possible sources of such terminals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验