Klotch D W, Ganey T M, Slater-Haase A, Sasse J
Department of Surgery, University of South Florida College of Medicine, Tampa 33606.
Otolaryngol Head Neck Surg. 1995 Feb;112(2):291-302. doi: 10.1016/S0194-59989570252-0.
Distraction osteoneogenesis, callotasis, has been demonstrated to be an effective means of lengthening long bones. A variation of Ilizarov's technique produces a transport disk from one cut surface of bone within a defect and advances the disk to the opposite surface to close the defect. This process, previously described by Costantino et al. (Arch Otolaryngol Head Neck Surg 1990; 116:535-45), demonstrated bone formation within the distraction site. The precise mechanism of bone formation has not yet been described for the mandible. Four conditioned beagles were studied, with one control dog maintained in neutral fixation and three dogs distracted at 0.25 mm every 8 hours. A two-cm defect was closed, and dogs were kept in fixation for 1 week after closure, after which they were killed. Three sites were evaluated: (1) the distraction seam, (2) the interface of the cortical and distracted bone, and (3) the cortexes at the closed defect. Each site was bisected, and one half was decalcified for immunohistochemical and hematoxylin and eosin pathologic evaluation. The vascular basement membrane was labeled for laminin and type IV collagen. Both of these substances demonstrate the differentiation of the vascular matrix component predisposing primary bone formation. Labels were intense at the distraction seam where intense angiogenesis occurred. No hyalin cartilage was observed at the distraction site, which indicates that the fixation was stable and that ossification occurred primarily without intermediate callous formation. This model demonstrated that osteoclasts within the canine model produce bone through primary bone formation within an angiogenic matrix rich in basement membrane laminin and type IV collagen. Likewise, bone is species specific in mineral composition for dog mandible. Understanding the formation and composition of distracted bone is essential for understanding application of this technique within the clinical setting.