Suppr超能文献

Reactive nitrogen intermediates in human neuropathology: an overview.

作者信息

Brosnan C F, Battistini L, Raine C S, Dickson D W, Casadevall A, Lee S C

机构信息

Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, N.Y. 10401.

出版信息

Dev Neurosci. 1994;16(3-4):152-61. doi: 10.1159/000112102.

Abstract

Nitric oxide (NO) is a recently recognized messenger molecule that has been shown to possess pleiotropic properties, including vasodilation, neurotransmission, cytotoxicity and antimicrobial activity. Constitutive and inducible forms of NO synthase (NOS) have been identified. Activation of cNOS releases relatively low levels of NO for short periods of time whereas induction of iNOS releases high levels of NO for extended periods of time. In rodents, iNOS is predominantly found in cells of the monocyte/macrophage series, including microglia, where it is induced by a combination of bacterial products and cytokines. cNOS and iNOS have also been reported in rodent astrocytes. Activation of iNOS in the CNS could be toxic to many different cell types, including neurons and oligodendrocytes. iNOS, however, has been difficult to demonstrate in human peripheral blood cells, suggesting that the regulation of expression of this enzyme in humans is different from that found in rodents. In this overview, we show that in human glial cells cultured in vitro, astrocytes, but not microglia, can be induced by cytokines to express NO-like activity. Bacterial products are without effect, but a combination of IL-1 and TNF alpha or IFN gamma is a potent stimulus. NO production by astrocytes inhibits Cryptococcus neoformans growth in vitro. In vivo, we show in acute multiple sclerosis lesions, intense NADPH-diaphorase activity is present in hypertrophic astrocytes in the lesion center and at the lesion edge, whereas microglia are nonreactive. Increased NADPH-diaphorase activity colocalizes with immunoreactivity for IL-1 and TNF. These results suggests that the induction of reactive nitrogen intermediates in humans differs from that found in rodents, and supports the conclusion that hypertrophic astrocytes are the major source of NO-like activity in the inflamed CNS.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验