Suppr超能文献

RNA和DNA三螺旋的对称性与结构

Symmetry and structure of RNA and DNA triple helices.

作者信息

Raghunathan G, Miles H T, Sasisekharan V

机构信息

Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Biopolymers. 1995 Sep;36(3):333-43. doi: 10.1002/bip.360360308.

Abstract

Despite wide interest in nucleic acid triple helices, there has been no stereochemically satisfactory structure of an RNA triple helix in atomic detail. AN RNA triplex structure has previously been proposed based on fiber diffraction and molecular modeling [S. Arnott and P. J. Bond (1973) Nature New Biology, Vol. 244, pp. 99-101; S. Arnott, P. J. Bond, E. Selsing, and P. J. C. Smith (1976) Nucleic Acids Research, Vol. 3, pp. 2459-2470], but it has nonallowed close contacts at every triplet and is therefore not stereochemically acceptable. We propose here a new model for an RNA triple helix in which the three chains have identical backbone conformations and are symmetry related. There are no short contacts. The modeling employs a novel geometrical approach using the linked atom least squares [P. J. C. Smith and S. Arnott (1978) Acta Crystallographica, Vol. A34, pp. 3-11] program and is not based on energy minimization. In general, the method leads to a range of possible structures rather than a unique structure. In the present case, however, the constraints resulting from the introduction of a third strand limit the possible structures to a very small range of conformation space. This method was used previously to obtain a model for DNA triple helices [G. Raghunathan, H. T. Miles, and V. Sasisekharan (1993) Biochemistry, Vol. 32, pp. 455-462], subsequently confirmed by fiber-type x-ray diffraction of oligomeric crystals [K. Liu, H. T. Miles, K. D. Parris, and V. Sasisekharan (1994) Nature Structural Biology, Vol. 1, pp. 11-12]. The above triple helices have Watson-Crick-Hoogsteen [K. Hoogsteen (1963) Acta Crystallographica, Vol. 16, pp. 907-916] pairing of the three bases. The same modeling method was used to investigate the feasibility of three-dimensional structures based on the three possible alternative hydrogen-bonding schemes: Watson-Crick-reverse Hoogsteen, Donohue [J. Donohue (1953) Proceedings of the National Academy of Science USA, Vol. 39, pp. 470-475] (reverse Watson-Crick)-Hoogsteen, and Donohue-reverse Hoogsteen. We found that none of these can occur in either RNA or DNA helices because they give rise only to structures with prohibitively short contacts between backbone and base atoms in the same chain.

摘要

尽管人们对核酸三链螺旋有着广泛的兴趣,但目前尚无原子水平上立体化学结构令人满意的RNA三链螺旋结构。此前曾基于纤维衍射和分子建模提出过一种RNA三链体结构[S. 阿诺特和P. J. 邦德(1973年)《自然新生物学》,第244卷,第99 - 101页;S. 阿诺特、P. J. 邦德、E. 塞尔辛和P. J. C. 史密斯(1976年)《核酸研究》,第3卷,第2459 - 2470页],但该结构在每个三联体处都存在不允许的紧密接触,因此在立体化学上是不可接受的。我们在此提出一种新的RNA三链螺旋模型,其中三条链具有相同的主链构象且具有对称关系。不存在短接触。该建模采用了一种新颖的几何方法,使用连接原子最小二乘法[P. J. C. 史密斯和S. 阿诺特(1978年)《晶体学报》,第A34卷,第3 - 11页]程序,且并非基于能量最小化。一般来说,该方法会产生一系列可能的结构而非单一结构。然而,在当前情况下,引入第三条链所产生的限制将可能的结构限制在构象空间的一个非常小的范围内。该方法先前曾用于获得DNA三链螺旋的模型[G. 拉古纳坦、H. T. 迈尔斯和V. 萨西塞卡兰(1993年)《生物化学》,第32卷,第455 - 462页],随后通过寡聚晶体的纤维型X射线衍射得到证实[K. 刘、H. T. 迈尔斯、K. D. 帕里斯和V. 萨西塞卡兰(1994年)《自然结构生物学》,第1卷,第11 - 12页]。上述三链螺旋中三个碱基采用沃森 - 克里克 - 霍格施泰因[K. 霍格施泰因(1963年)《晶体学报》,第16卷,第907 - 916页]配对方式。同样的建模方法被用于研究基于三种可能的替代氢键方案的三维结构的可行性:沃森 - 克里克 - 反向霍格施泰因、多诺休[J. 多诺休(1953年)《美国国家科学院院刊》,第39卷,第470 - 475页](反向沃森 - 克里克) - 霍格施泰因以及多诺休 - 反向霍格施泰因。我们发现这些方案在RNA或DNA螺旋中均无法出现,因为它们只会产生在同一条链的主链和碱基原子之间存在极短接触的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验