Hervás M, Navarro J A, Díaz A, Bottin H, De la Rosa M A
Instituto de Bioquímica Vegetal y Fotosíntesis, Facultad de Biología, Universidad de Sevilla y CSIC, Spain.
Biochemistry. 1995 Sep 12;34(36):11321-6. doi: 10.1021/bi00036a004.
The reaction mechanism of electron transfer from the interchangeable metalloproteins plastocyanin (Pc) and cytochrome c6 (Cyt) to photooxidized P700 in photosystem I (PSI) has been studied by laser-flash absorption spectroscopy using a number of evolutionarily differentiated organisms such as cyanobacteria (Anabaena sp. PCC 7119 and Synechocystis sp. PCC 6803), green algae (Monoraphidium braunii), and higher plants (spinach). PSI reduction by Pc or Cyt shows different kinetics depending on the organism from which the photosystem and metalloproteins are isolated. According to the experimental data herein reported, three different kinetic models are proposed by assuming either an oriented collisional reaction mechanism (type I), a minimal two-step mechanism involving complex formation followed by intracomplex electron transfer (type II), or rearrangement of the reaction partners within the complex before electron transfer takes place (type III). Our findings suggest that PSI was able to first optimize its interaction with positively charged Cyt and that the evolutionary replacement of the ancestral Cyt by Pc, as well as the appearance of the fast kinetic phase in the Pc/PSI system of higher plants, would involve structural modifications in both the donor protein and PSI.
利用激光闪光吸收光谱法,通过研究多种进化上有差异的生物,如蓝细菌(鱼腥藻属PCC 7119和集胞藻属PCC 6803)、绿藻(布朗单歧藻)和高等植物(菠菜),探讨了可互换金属蛋白质体蓝素(Pc)和细胞色素c6(Cyt)向光系统I(PSI)中光氧化的P700进行电子转移的反应机制。Pc或Cyt对PSI的还原表现出不同的动力学,这取决于分离光系统和金属蛋白的生物。根据本文报道的实验数据,通过假设定向碰撞反应机制(I型)、涉及复合物形成随后进行复合物内电子转移的最小两步机制(II型)或在电子转移发生之前复合物内反应伙伴的重排(III型),提出了三种不同的动力学模型。我们的研究结果表明,PSI能够首先优化其与带正电荷的Cyt的相互作用,并且高等植物的Pc/PSI系统中,祖先Cyt被Pc的进化替代以及快速动力学阶段的出现,将涉及供体蛋白和PSI两者的结构修饰。