Pelletier J N, MacKenzie R E
Department of Biochemistry, McGill University, Montréal, Québec, Canada.
Biochemistry. 1995 Oct 3;34(39):12673-80. doi: 10.1021/bi00039a025.
The bifunctional dehydrogenase/cyclohydrolase domain of the human NADP-dependent trifunctional methyleneH4folate dehydrogenase/methenylH4folate cyclohydrolase/formylH4folate synthetase (H4folate = tetrahydrofolate) catalyzes two sequential reactions involved in the interconversion of H4folate derivatives. We have established by equilibrium dialysis that a single H4folate-binding site exists per monomer of the dimeric domain and that the presence of nucleotides has two unexpected effects on H4folate substrate binding. Nucleotides containing a 5'-phosphate cause positive cooperativity in the binding of methyleneH4folate but not of 10-formylH4folate, and NADP increases the affinity for 10-formylH4folate by a factor of 25. The results indicate that dinucleotide preferentially binds before 10-formylH4folate in the reverse cyclohydrolase reaction, and this mechanism increases the efficiency of conversion of 10-formylH4folate to methyleneH4folate. We report new kinetic data that are also consistent with a steady-state random mechanism for this enzyme. To assess whether the enzyme functions at equilibrium in vivo, we determined the overall chemical equilibrium constant of Keq = 16 for ([10- formylH4folate][NADPH])/([methyleneH4folate][NADP]). Using this value and reported ratios of free dinucleotides and folate derivatives in vivo, we estimate that the cytosolic dehydrogenase/cyclohydrolase reactions exist near the equilibrium position. However, the NAD-dependent dehydrogenase/cyclohydrolase reactions in mitochondria are far from equilibrium and are poised toward 10-formylH4folate synthesis. The results of the binding and kinetic studies indicate that the bifunctional nature of the methyleneH4folate dehydrogenase/methenylH4folate cyclohdrolase domain is designed to optimize the overall reverse reactions in vivo.
人NADP依赖性三功能亚甲基四氢叶酸脱氢酶/亚甲基四氢叶酸环水解酶/甲酰四氢叶酸合成酶(H4叶酸=四氢叶酸)的双功能脱氢酶/环水解酶结构域催化H4叶酸衍生物相互转化过程中的两个连续反应。我们通过平衡透析确定,二聚体结构域的每个单体存在一个单一的H4叶酸结合位点,并且核苷酸的存在对H4叶酸底物结合有两个意想不到的影响。含有5'-磷酸的核苷酸在亚甲基四氢叶酸的结合中引起正协同作用,但在10-甲酰四氢叶酸的结合中则不然,并且NADP将对10-甲酰四氢叶酸的亲和力提高了25倍。结果表明,在反向环水解酶反应中,二核苷酸优先在10-甲酰四氢叶酸之前结合,并且这种机制提高了10-甲酰四氢叶酸转化为亚甲基四氢叶酸的效率。我们报告了新的动力学数据,这些数据也与该酶的稳态随机机制一致。为了评估该酶在体内是否处于平衡状态,我们确定了([10-甲酰四氢叶酸][NADPH])/([亚甲基四氢叶酸][NADP])的总化学平衡常数Keq = 16。使用该值以及体内游离二核苷酸和叶酸衍生物的报道比例,我们估计胞质脱氢酶/环水解酶反应接近平衡位置。然而,线粒体中依赖NAD的脱氢酶/环水解酶反应远未达到平衡,并且倾向于10-甲酰四氢叶酸的合成。结合和动力学研究的结果表明,亚甲基四氢叶酸脱氢酶/亚甲基四氢叶酸环水解酶结构域的双功能性质旨在优化体内的整体反向反应。