Suppr超能文献

蛋白C抑制剂与凝血蛋白酶之间的分子间相互作用。

Intermolecular interactions between protein C inhibitor and coagulation proteases.

作者信息

Cooper S T, Whinna H C, Jackson T P, Boyd J M, Church F C

机构信息

Department of Pathology, University of North Carolina School of Medicine, Chapel Hill 27599-7035, USA.

出版信息

Biochemistry. 1995 Oct 10;34(40):12991-7. doi: 10.1021/bi00040a009.

Abstract

Protein C inhibitor (PCI) inhibits multiple plasma serine proteases. To determine which residues contribute to its specificity of inhibition, 19 mutations in the reactive site loop of PCI (from Thr352 to Arg357) were generated and assayed with thrombin, activated protein C (APC), and factor Xa. To identify the intermolecular interactions responsible for these kinetics, a molecular model of PCI was generated using alpha 1-protease inhibitor and ovalbumin as templates. This model of PCI was docked with thrombin, followed by extensive energy minimization, to determine a lowest energy complex. The resulting docked complex was used as a template to form molecular models of PCI-APC and PCI-factor Xa complexes. The best inhibitors of thrombin contained Pro or Gly at the P2 position in place of Phe353, with 2- and 7-fold increases in activity, respectively. These substitutions reduced steric interactions with the 60-insertion loop unique to thrombin. The best inhibitors of APC and factor Xa contained Arg at the P3 position in place of Thr352, with 2- and 5-fold increases in inhibition rates, respectively. The molecular model predicts that Arg in this position could form a salt bridge with Glu217 of each protease. Changing Arg357 at the P3' position had little effect on protease inhibition, consistent with the observation in the model that this residue points toward the body of PCI, forming a salt bridge with Glu220. Given its broad specificity of inhibition, PCI has proven very useful in understanding the nature of serpin-protease interactions using multiple mutations in a serpin assayed with multiple proteases.

摘要

蛋白C抑制剂(PCI)可抑制多种血浆丝氨酸蛋白酶。为了确定哪些残基对其抑制特异性有贡献,在PCI的反应位点环(从Thr352到Arg357)中产生了19个突变,并使用凝血酶、活化蛋白C(APC)和因子Xa进行检测。为了确定导致这些动力学的分子间相互作用,以α1-蛋白酶抑制剂和卵清蛋白为模板生成了PCI的分子模型。该PCI模型与凝血酶对接,随后进行广泛的能量最小化,以确定最低能量复合物。所得的对接复合物用作模板,形成PCI-APC和PCI-因子Xa复合物的分子模型。凝血酶的最佳抑制剂在P2位置含有Pro或Gly,取代了Phe353,活性分别提高了2倍和7倍。这些取代减少了与凝血酶特有的60插入环的空间相互作用。APC和因子Xa的最佳抑制剂在P3位置含有Arg,取代了Thr352,抑制率分别提高了2倍和5倍。分子模型预测该位置的Arg可与每种蛋白酶的Glu217形成盐桥。改变P3'位置的Arg357对蛋白酶抑制作用影响很小,这与模型中的观察结果一致,即该残基指向PCI主体,与Glu220形成盐桥。鉴于其广泛的抑制特异性,PCI已被证明在利用丝氨酸蛋白酶抑制剂中的多个突变与多种蛋白酶进行检测来理解丝氨酸蛋白酶抑制剂-蛋白酶相互作用的本质方面非常有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验