Suppr超能文献

[数字发光乳腺摄影中图像质量的ROC分析与当前乳腺摄影胶片-屏系统的比较]

[ROC analysis of image quality in digital luminescence radiography in comparison with current film-screen systems in mammography].

作者信息

Wiebringhaus R, John V, Müller R D, Hirche H, Voss M, Callies R

机构信息

Zentralinstitut für Röntgendiagnostik, Universitätsklinikum Essen.

出版信息

Aktuelle Radiol. 1995 Jul;5(4):263-7.

PMID:7548257
Abstract

AIM

To compare in mammography the image quality of digital luminescence radiography (DLR) to that of usual film screen mammography and xeromammography.

MATERIALS AND METHODS

Three single emulsion film-screen combinations, one double coated high resolution film and xeroradiography, were tested for this purpose. In our phantom study the detectability of microcalcifications, fibrils and low contrast details were first of all studied separately. Image processing techniques were, for example, contrast variation by grey scale level windowing, "unsharp mask" filtering and regulatable edge enhancement. Phantom images were made and then the image quality was evaluated by observer performance study using a receiver operating characteristic (ROC analysis).

RESULTS

Best results in respect of detection of microcalcifications and fibrils were found in xeroradiography, luminescent image plate and double-coated film-screen combination. These systems showed more favourable ROC curves than the single emulsion film-screen combinations.

CONCLUSIONS

Our results indicate that image quality of digital images in the field of image processing is equal to that of conventional mammographic techniques and partially superior to detection of low contrast details.

摘要

目的

在乳腺钼靶摄影中比较数字发光射线照相术(DLR)与传统胶片屏乳腺摄影及干板乳腺摄影的图像质量。

材料与方法

为此测试了三种单乳剂胶片屏组合、一种双面涂布高分辨率胶片及干板射线照相术。在我们的体模研究中,首先分别研究了微钙化、纤维及低对比度细节的可检测性。图像处理技术包括,例如通过灰度级窗口化改变对比度、“锐化掩膜”滤波及可调节边缘增强。制作体模图像,然后通过使用接收者操作特征(ROC分析)的观察者性能研究评估图像质量。

结果

在干板射线照相术、发光成像板及双面涂布胶片屏组合中,微钙化及纤维检测方面取得了最佳结果。这些系统的ROC曲线比单乳剂胶片屏组合更有利。

结论

我们的结果表明,图像处理领域数字图像的质量与传统乳腺摄影技术相当,并且在检测低对比度细节方面部分优于传统技术。

相似文献

引用本文的文献

1
A Support Vector Machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins.
BMC Bioinformatics. 2012;13 Suppl 15(Suppl 15):S9. doi: 10.1186/1471-2105-13-S15-S9. Epub 2012 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验