Suppr超能文献

通过蛋白水解和质谱联用探究DNA结合蛋白Max的溶液结构。

Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry.

作者信息

Cohen S L, Ferré-D'Amaré A R, Burley S K, Chait B T

机构信息

Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, New York 10021, USA.

出版信息

Protein Sci. 1995 Jun;4(6):1088-99. doi: 10.1002/pro.5560040607.

Abstract

A simple biochemical method that combines enzymatic proteolysis and matrix-assisted laser desorption ionization mass spectrometry was developed to probe the solution structure of DNA-binding proteins. The method is based on inferring structural information from determinations of protection against enzymatic proteolysis, as governed by solvent accessibility and protein flexibility. This approach was applied to the study of the transcription factor Max--a member of the basic/helix-loop-helix/zipper family of DNA-binding proteins. In the absence of DNA and at low ionic strengths, Max is rapidly digested by each of six endoproteases selected for the study, results consistent with an open and flexible structure of the protein. At physiological salt levels, the rates of digestion are moderately slowed; this and the patterns of cleavage are consistent with homodimerization of the protein through a predominantly hydrophobic interface. In the presence of Max-specific DNA, the protein becomes dramatically protected against proteolysis, exhibiting up to a 100-fold reduction in cleavage rates. Over a 2-day period, both complete and partial proteolysis of the Max-DNA complex is observed. The partial proteolytic fragmentation patterns reflect a very high degree of protection in the N-terminal and helix-loop-helix regions of the protein, correlating with those expected of a stable dimer bound to DNA at its basic N-terminals. Less protection is seen at the C-terminal where a slow, sequential proteolytic cleavage occurs, correlating to the presence of a leucine zipper. The results also indicate a high affinity of Max for its target DNA that remains high even when the leucine zipper is proteolytically removed. In addition to the study of the helix-loop-helix protein Max, the present method appears well suited for a range of other structural biological applications.

摘要

我们开发了一种结合酶促蛋白水解和基质辅助激光解吸电离质谱的简单生化方法,用于探测DNA结合蛋白的溶液结构。该方法基于从酶促蛋白水解保护测定中推断结构信息,这由溶剂可及性和蛋白质柔韧性决定。此方法应用于转录因子Max的研究,Max是DNA结合蛋白碱性/螺旋-环-螺旋/拉链家族的成员。在无DNA且低离子强度条件下,Max被为该研究选择的六种内切蛋白酶中的每一种迅速消化,结果表明该蛋白具有开放且灵活的结构。在生理盐浓度下,消化速率适度减慢;这一点以及切割模式与该蛋白通过主要为疏水界面的同二聚化一致。在存在Max特异性DNA的情况下,该蛋白对蛋白水解具有显著的抗性,切割速率降低达100倍。在两天时间内,观察到Max-DNA复合物的完全和部分蛋白水解。部分蛋白水解片段模式反映出该蛋白的N端和螺旋-环-螺旋区域受到高度保护,这与预期的在其碱性N端与DNA结合的稳定二聚体相符。在C端观察到的保护较少,此处发生缓慢的顺序蛋白水解切割,这与亮氨酸拉链的存在相关。结果还表明Max对其靶DNA具有高亲和力,即使亮氨酸拉链被蛋白水解去除后该亲和力仍很高。除了对螺旋-环-螺旋蛋白Max的研究外,本方法似乎也非常适合一系列其他结构生物学应用。

相似文献

引用本文的文献

9
Genome recognition by MYC.MYC对基因组的识别
Cold Spring Harb Perspect Med. 2014 Feb 1;4(2):a014191. doi: 10.1101/cshperspect.a014191.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验