Suppr超能文献

正常及异常脑单光子发射断层扫描中自动脑轮廓测定的验证

Validation of automated brain contour determination in normal and abnormal cerebral single-photon emission tomography.

作者信息

van Elmbt L R, Keyeux A, Demeure R

机构信息

Center of Nuclear Medecine, Université Catholique de Louvain, School of Medicine, Brussels, Belgium.

出版信息

Eur J Nucl Med. 1995 Jun;22(6):537-42. doi: 10.1007/BF00817278.

Abstract

A contour detection algorithm for cerebral studies, using the method of Tomitani, has been implemented on a single-photon emission tomographic (SPET) system. It is based on the detetion by threshold of the brain edge in the sinogram and does not depend on the reconstruction algorithm. Thirteen normal subjects underwent an examination on both computed tomography (CT) and SPET using a head holder to ensure the reproducibility of the positioning. The CT scan contour of the brain was drawn manually according to the brain parenchyma limits. The SPET brain contour was obtained by use of the Tomitani algorithm after the threshold had been determined on an active cylindrical phantom. Using a threshold of 37% of the maximum uptake, the length of the contour as well as the area obtained with SPET and CT were not found to be statistically different. The method of Tomitani, which is simpler and faster then previous methods, provides contours which superimpose very well with CT scan images. Application to patients with unilateral pathological defects is possible by requiring that the contour is symmetrical.

摘要

一种用于脑部研究的轮廓检测算法,采用富谷法,已在单光子发射断层扫描(SPET)系统上实现。它基于通过阈值检测正弦图中的脑边缘,并且不依赖于重建算法。13名正常受试者使用头部固定器进行了计算机断层扫描(CT)和SPET检查,以确保定位的可重复性。根据脑实质界限手动绘制脑部的CT扫描轮廓。在有源圆柱形模体上确定阈值后,使用富谷算法获得SPET脑轮廓。使用最大摄取量的37%作为阈值时,发现SPET和CT获得的轮廓长度以及面积在统计学上没有差异。富谷法比以前的方法更简单、更快,提供的轮廓与CT扫描图像非常吻合。通过要求轮廓对称,可以将其应用于单侧病理缺陷患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验