Suppr超能文献

The effects of streptozotocin-induced diabetes and insulin supplementation on expression of the glycogen phosphorylase gene in rat liver.

作者信息

Rao P V, Pugazhenthi S, Khandelwal R L

机构信息

Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.

出版信息

J Biol Chem. 1995 Oct 20;270(42):24955-60. doi: 10.1074/jbc.270.42.24955.

Abstract

We have previously observed that the chronic effects of streptozotocin-induced diabetes cause a decrease in the total hepatic glycogen phosphorylase activity with a corresponding reduction in the phosphorylase protein levels. These effects were normalized by insulin administration to diabetic rats. There was no change in the total glycogen synthase activity as a result of diabetes or insulin supplementation. These results are extended to examine the effects of diabetes and insulin administration to diabetic animals on the expression of phosphorylase and glycogen synthase enzymes. The expression (i.e. mRNA levels) of phosphorylase was down-regulated (45% of normal levels) in diabetic livers, and this was normalized by insulin supplementation to diabetic animals. Diabetes or insulin supplementation to diabetic rats showed no effect on the transcription rate of phosphorylase. As expected, diabetes (or insulin administration to diabetic animals) did not cause any alteration in the mRNA levels or in the transcription rate of hepatic glycogen synthase. The stability of phosphorylase mRNA was then examined using hepatocytes prepared from normal and diabetic rats. Diabetes caused a decrease in the half-life of phosphorylase mRNA from 14 h in normal hepatocytes to 6.5 h in diabetic hepatocytes. Insulin supplementation to the medium of diabetic hepatocytes increased the half-life of phosphorylase mRNA to a level comparable with normal values. This study indicates that the chronic effect of insulin on the activation of the total hepatic phosphorylase activity (and protein) is mediated through the stabilization of its mRNA levels.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验