Suppr超能文献

Radiation-induced apoptosis is differentially regulated in primary B cells from normal mice and mice with the CBA/N X-linked immunodeficiency.

作者信息

Woodland R T, Schmidt M R, Riggs J E, Korsmeyer S J, Lussier A M, Gravel K A

机构信息

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA.

出版信息

J Immunol. 1995 Oct 1;155(7):3453-63.

PMID:7561040
Abstract

Normal B cells responsive to thymus independent-type 1 Ags (TI-1) are resistant to low doses of ionizing radiation in vivo (200-300 cGy), compared with TI-1 responsive B cells of mice with the CBA/N X-linked immunodeficiency (xid). This difference in radiosensitivity is an intrinsic B cell property; normal B cells adoptively transferred into xid mice remain TI-1-responsive after irradiation in situ. Because irradiation induces programmed cell death (PCD) in lymphocytes, we determined whether PCD were regulated differently in normal and xid B cells. B cells isolated immediately after irradiation from normal or xid donors when cultured without stimulators became apoptotic with the same kinetics and to the same extent, showing that apoptosis was induced equally in both populations. Apoptosis could be suppressed and mitogenesis could be induced frequently, however, if irradiated B cells were cultured with B cell activators. When activators using separate signal transduction pathways were compared, a hierarchy of efficiency at effecting apoptosis rescue was observed, and activators used singly without effect could synergize to protect. xid B cells were more resistant to rescue than normal B cells unless PMA was used as a stimulant. Although the mechanism of activator-induced rescue was not established, selective overexpression of a bcl-2 transgene rendered xid B cells radioresistant. The data suggest that a signal(s) delivered to irradiated B cells in the in vivo microenvironment suppresses apoptosis and that xid B cells and a radiosensitive subpopulation of normal B cells are refractory to this signal(s).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验