Suppr超能文献

Cell cycle gene expression and E2F transcription factor complexes in human melanoma cells induced to terminally differentiate.

作者信息

Jiang H, Lin J, Young S M, Goldstein N I, Waxman S, Davila V, Chellappan S P, Fisher P B

机构信息

Department of Pathology, Comprehensive Cancer Center/Institute of Cancer Research, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.

出版信息

Oncogene. 1995 Sep 21;11(6):1179-89.

PMID:7566979
Abstract

Defects in cellular differentiation are a common occurrence in human cancers. The combination of recombinant human fibroblast interferon (IFN-beta) and the antileukemic compound mezerein (MEZ) results in an irreversible loss of proliferative capacity and terminal cell differentiation in H0-1 human melanoma cells. In contrast, either agent alone induces reversible growth arrest and/or specific components of the differentiation process without inducing terminal differentiation. The current study investigates changes in cell cycle, cell cycle gene expression and E2F transcription factor complex formation during the processes of reversible and irreversible (terminal) differentiation. Induction of both terminal differentiation and reversible differentiation (MEZ treatment) results in a temporal decrease in DNA synthesis and the percentage of cells in S phase and a decrease in the expression of cell cycle and growth regulated genes, including cdc2, cyclin A, cyclin B, histone H1, histone H4, nm23-H1, p53 and c-myc. Persistent gene expression changes occur in terminally differentiated cells, but not in reversibly differentiated cells. H0-1 cells contain several E2F binding activities, including uncomplexed E2F, an E2F-p107-cyclin A-cdk2 kinase complex and an Rb-E2F complex. Induction of growth arrest by MEZ results in a slow migrating gelshift band that contains E2F associated with the pRb2/p130 protein. There is also a loss of the Rb-E2F complex. Induction of terminal differentiation after treatment with IFN-beta + MEZ generates a second pRb2/p130-E2F complex that migrates considerably faster than the pRb2/p130-E2F complex resulting from growth arrest. The slower migrating complex may contribute to growth arrest, whereas the faster migrating complex may play a role in terminal differentiation. Our results demonstrate that terminal cell differentiation involves a co-ordinate and continuous suppression of a number of cell cycle and growth related genes and results in the development of a novel E2F transcription factor complex not apparent in growth arrested and reversibly differentiated human melanoma cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验