Suppr超能文献

抗体中高变互补决定区H3环结构的预测

Prediction of hypervariable CDR-H3 loop structures in antibodies.

作者信息

Reczko M, Martin A C, Bohr H, Suhai S

机构信息

Molecular Biophysics Department, German Cancer Research Center, Heidelberg.

出版信息

Protein Eng. 1995 Apr;8(4):389-95. doi: 10.1093/protein/8.4.389.

Abstract

The structure of the most variable antibody hypervariable loop, CDR-H3, has been predicted from amino acid sequence alone. In contrast to other approaches predictions are made for loop lengths up to 17 residues. The predictions have been achieved using artificial neural networks which are trained on a large set of loops from the Brookhaven Protein Databank which have structures similar to CDR-H3. The loop structures are described by the two backbone dihedral angles phi and psi for each residue. For 21 CDR-H3 loops unique to the neural network, the prediction of dihedral angles leads to an average root mean square deviation in the Cartesian coordinates of 2.65 A. The present method, when combined with existing modelling protocols, provides an important addition to the structural prediction of the complementarity determining regions of antibodies.

摘要

仅根据氨基酸序列就预测出了最具变异性的抗体高变环(CDR-H3)的结构。与其他方法不同的是,该方法对长度达17个残基的环进行预测。预测是通过人工神经网络实现的,这些网络是在布鲁克海文蛋白质数据库中大量与CDR-H3结构相似的环上进行训练的。环结构由每个残基的两个主链二面角φ和ψ来描述。对于神经网络独有的21个CDR-H3环,二面角预测在笛卡尔坐标中导致的平均均方根偏差为2.65埃。当本方法与现有的建模方案相结合时,可为抗体互补决定区的结构预测提供重要补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验