Suppr超能文献

蛋白质蒙特卡罗模拟中增强的构象采样:应用于受限肽段

Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide.

作者信息

Kidera A

机构信息

Protein Engineering Research Institute, Osaka, Japan.

出版信息

Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9886-9. doi: 10.1073/pnas.92.21.9886.

Abstract

A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.

摘要

提出了一种用于球状蛋白质的蒙特卡罗模拟方法,称为扩展标度集体变量(ESCV)蒙特卡罗方法。该方法结合了两种蒙特卡罗算法,即熵采样算法和标度集体变量算法。熵采样蒙特卡罗方法即使在具有大量潜在势垒的无序系统中也能够对大的构型空间进行采样。相比之下,标度集体变量蒙特卡罗方法为动力学高度协同的系统提供了高效采样。由于球状蛋白质是一个无序系统,其动力学以集体运动为特征,这两种算法的结合可以为球状蛋白质提供最优的蒙特卡罗模拟。作为一个测试案例,我们对一种含细胞黏附性精氨酸 - 甘氨酸 - 天冬氨酸的肽(赖氨酸 - 精氨酸 - 半胱氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 半胱氨酸 - 甲硫氨酸 - 天冬氨酸)进行了ESCV蒙特卡罗模拟,并确定了300K时的构象分布。该肽在两个半胱氨酸残基之间含有一个二硫键。这种键模拟了由蛋白质球状性质产生的强几何约束,并导致高度协同的动力学。计算结果表明,ESCV蒙特卡罗方法没有被困在任何局部最小值处,并且正确地确定了正则分布。

相似文献

4
Generalized-ensemble algorithms for molecular simulations of biopolymers.用于生物聚合物分子模拟的广义系综算法。
Biopolymers. 2001;60(2):96-123. doi: 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F.
10
Application of the multiensemble sampling to the equilibrium folding of proteins.多系综抽样在蛋白质平衡折叠中的应用。
Bioinformatics. 2006 Aug 1;22(15):1832-7. doi: 10.1093/bioinformatics/btl282. Epub 2006 Jun 9.

引用本文的文献

2
Virtual states introduced for overcoming entropic barriers in conformational space.为克服构象空间中的熵垒而引入的虚拟态。
Biophysics (Nagoya-shi). 2012 Oct 10;8:139-44. doi: 10.2142/biophysics.8.139. eCollection 2012.
10
Modeling of loops in protein structures.蛋白质结构中环的建模。
Protein Sci. 2000 Sep;9(9):1753-73. doi: 10.1110/ps.9.9.1753.

本文引用的文献

1
New approach to spin-glass simulations.
Phys Rev Lett. 1992 Oct 12;69(15):2292-2295. doi: 10.1103/PhysRevLett.69.2292.
2
New Monte Carlo technique for studying phase transitions.用于研究相变的新蒙特卡罗技术。
Phys Rev Lett. 1988 Dec 5;61(23):2635-2638. doi: 10.1103/PhysRevLett.61.2635.
7
Structure of a conformationally constrained Arg-Gly-Asp sequence inserted into human lysozyme.
J Biol Chem. 1995 Mar 17;270(11):5687-90. doi: 10.1074/jbc.270.11.5687.
9
Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins.
Biopolymers. 1985 Mar;24(3):527-46. doi: 10.1002/bip.360240308.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验