Kidera A
Protein Engineering Research Institute, Osaka, Japan.
Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9886-9. doi: 10.1073/pnas.92.21.9886.
A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.
提出了一种用于球状蛋白质的蒙特卡罗模拟方法,称为扩展标度集体变量(ESCV)蒙特卡罗方法。该方法结合了两种蒙特卡罗算法,即熵采样算法和标度集体变量算法。熵采样蒙特卡罗方法即使在具有大量潜在势垒的无序系统中也能够对大的构型空间进行采样。相比之下,标度集体变量蒙特卡罗方法为动力学高度协同的系统提供了高效采样。由于球状蛋白质是一个无序系统,其动力学以集体运动为特征,这两种算法的结合可以为球状蛋白质提供最优的蒙特卡罗模拟。作为一个测试案例,我们对一种含细胞黏附性精氨酸 - 甘氨酸 - 天冬氨酸的肽(赖氨酸 - 精氨酸 - 半胱氨酸 - 精氨酸 - 甘氨酸 - 天冬氨酸 - 半胱氨酸 - 甲硫氨酸 - 天冬氨酸)进行了ESCV蒙特卡罗模拟,并确定了300K时的构象分布。该肽在两个半胱氨酸残基之间含有一个二硫键。这种键模拟了由蛋白质球状性质产生的强几何约束,并导致高度协同的动力学。计算结果表明,ESCV蒙特卡罗方法没有被困在任何局部最小值处,并且正确地确定了正则分布。