Suppr超能文献

The effects of tunicamycin on secretion, adhesion and activities of the cellulase complex of Clostridium cellulolyticum, ATCC 35319.

作者信息

Gehin A, Petitdemange H

机构信息

Université de Nancy I, Laboratoire de Chimie biologique I, Vandoeuvre-lès-Nancy, France.

出版信息

Res Microbiol. 1995 Mar-Apr;146(3):251-62. doi: 10.1016/0923-2508(96)80281-6.

Abstract

The effects of tunicamycin, an inhibitor of N-asparagine-linked glycosylation, on the secretion, adhesion and activities of the cellulase complex produced by Clostridium cellulolyticum have been studied. Tunicamycin at 0.1 micrograms/ml slightly inhibited growth on cellobiose. Endoglucanase, p-nitrophenylcellobiosidase and avicelase activities of the "Avicel"-adsorbed fraction from a culture grown with this drug were decreased 4.4-, 1.4- and 12.2-fold, respectively. During growth on cellulose, tunicamycin considerably inhibited growth and adhesion of cells on their substrate (only 28% of the cells were bound to cellulose). SDS-PAGE mobilities of some proteins excreted during growth with the drug were different from those of proteins from control cultures; the native Avicel-adsorbed fraction (PH2O) consisted of three major components of molecular weights about 135, 90 and 68 kDa, whereas in the presence of tunicamycin (0.1 micrograms/ml), the Avicel-adsorbed fraction (PH2OT) contained only a major band of 105 kDa, and the proteins of 135 and 68 kDa appeared weakly. By using the "Dig Glycan Detection" kit, some proteins appeared to be glycosylated, such as the 135-, 95-, 47- and 40-kDa proteins. Moreover, the affinity for Avicel and the avicelase activity decreased dramatically for the Avicel-adsorbed fraction from a culture grown with the drug. The remaining avicelase activity of the PH2O fraction in the presence of specific P135 antiserum was 50% of the initial activity, whereas CMCase and pNPCbase were not affected. The glycosylated protein of 135 kDa played a prominent role in the adhesion and avicelase activity of C. cellulolyticum. Moreover, the endoglucanase activity in a culture broth from tunicamycin-grown cells was more thermolabile and protease-sensitive than that from control cultures.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验