Gracy J, Chiche L, Sallantin J
Laboratoire d'Informatique, de Robotique et de Micro-électronique de Montpellier, France.
Proc Int Conf Intell Syst Mol Biol. 1993;1:145-53.
We propose in this paper a modular learning environment for protein modeling. In this system, the protein modeling problem is tackled in two successive phases. First, partial structural informations are determined via numerical learning techniques. Then, in the second phase, the multiple available informations are combined in pattern matching searches via dynamic programming. It is shown on real problems that various protein structure predictions can be improved in this way, such as secondary structure prediction, alignment of weakly homologous protein sequences or protein model evaluations.
我们在本文中提出了一种用于蛋白质建模的模块化学习环境。在这个系统中,蛋白质建模问题分两个连续阶段解决。首先,通过数值学习技术确定部分结构信息。然后,在第二阶段,通过动态规划在模式匹配搜索中组合多个可用信息。实际问题表明,通过这种方式可以改进各种蛋白质结构预测,例如二级结构预测、弱同源蛋白质序列比对或蛋白质模型评估。