Suppr超能文献

应用于蛋白质结构预测的学习与比对方法。

Learning and alignment methods applied to protein structure prediction.

作者信息

Gracy J, Chiche L, Sallantin J

机构信息

Laboratoire d'Informatique, de Robotique et de Micro-électronique de Montpellier, France.

出版信息

Biochimie. 1993;75(5):353-61. doi: 10.1016/0300-9084(93)90169-s.

Abstract

Learning techniques are able to extract structural knowledge specific to a selected set of proteins. We describe two algorithms that optimize scores expressing the propensity of a polypeptide sequence to adopt a local fold. The first algorithm generates secondary structure prediction rules based on a dictionary of geometrical patterns frequently found in the learning database. The second algorithm leads to scores that indicate the fit between an amino acid and a given local structural environment. Dynamic programming is then used to align structural information profiles by modifying the local mutation cost with the above learned functions. The main features of the system are exemplified on the structural prediction of the N-terminal domain of the CD4 antigen. Then the usefulness of additional 3-D information in the alignment is benchmarked on eight pairs of weakly homologous proteins.

摘要

学习技术能够提取特定蛋白质组的结构知识。我们描述了两种算法,它们优化了表达多肽序列采用局部折叠倾向的分数。第一种算法基于学习数据库中经常出现的几何模式字典生成二级结构预测规则。第二种算法得出的分数表示氨基酸与给定局部结构环境之间的契合度。然后使用动态规划,通过用上述学习到的函数修改局部突变成本来对齐结构信息概况。该系统的主要特征在CD4抗原N端结构域的结构预测中得到了例证。然后,在八对弱同源蛋白质上对比对中额外三维信息的有用性进行了基准测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验