Suppr超能文献

自组织映射中特征空间的分布与收敛

On the distribution and convergence of feature space in self-organizing maps.

作者信息

Yin H, Allinson N M

机构信息

Department of Electronics, University of York, United Kingdom.

出版信息

Neural Comput. 1995 Nov;7(6):1178-87. doi: 10.1162/neco.1995.7.6.1178.

Abstract

In this paper an analysis of the statistical and the convergence properties of Kohonen's self-organizing map of any dimension is presented. Every feature in the map is considered as a sum of a number of random variables. We extend the Central Limit Theorem to a particular case, which is then applied to prove that the feature space during learning tends to multiple gaussian distributed stochastic processes, which will eventually converge in the mean-square sense to the probabilistic centers of input subsets to form a quantization mapping with a minimum mean squared distortion either globally or locally. The diminishing effect, as training progresses, of the initial states on the value of the feature map is also shown.

摘要

本文对任意维度的Kohonen自组织映射的统计特性和收敛特性进行了分析。映射中的每个特征都被视为多个随机变量的和。我们将中心极限定理扩展到一种特殊情况,然后应用该定理证明学习过程中的特征空间趋向于多个高斯分布的随机过程,这些过程最终将在均方意义上收敛到输入子集的概率中心,以形成全局或局部具有最小均方失真的量化映射。还展示了随着训练的进行,初始状态对特征映射值的影响逐渐减小。

相似文献

2
Probabilistic PCA self-organizing maps.概率主成分分析自组织映射
IEEE Trans Neural Netw. 2009 Sep;20(9):1474-89. doi: 10.1109/TNN.2009.2025888. Epub 2009 Aug 18.
4
Probabilistic self-organizing maps for continuous data.用于连续数据的概率自组织映射
IEEE Trans Neural Netw. 2010 Oct;21(10):1543-54. doi: 10.1109/TNN.2010.2060208. Epub 2010 Aug 19.
6
Multivariate student-t self-organizing maps.多元学生 t 自组织映射。
Neural Netw. 2009 Dec;22(10):1432-47. doi: 10.1016/j.neunet.2009.05.001. Epub 2009 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验