Walsh M P, Kargacin G J, Kendrick-Jones J, Lincoln T M
Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Canada.
Can J Physiol Pharmacol. 1995 May;73(5):565-73. doi: 10.1139/y95-072.
Vascular smooth muscle contraction is thought to occur by a mechanism similar to that described for striated muscles, i.e., via a cross-bridge cycling--sliding filament mechanism. This symposium focused on Ca2+ signalling and the role of intracellular free Ca2+ concentration, [Ca2+]i, in regulating vascular tone: how contractile stimuli leading to an increase in [Ca2+]i trigger vasoconstriction and how relaxant signals reduce [Ca2+]i causing vasodilation. M.P. Walsh opened the symposium with an overview emphasizing the central role of myosin phosphorylation-dephosphorylation in the regulation of vascular tone and identifying recent developments concerning regulation of [Ca2+]i, Ca2+ sensitization and desensitization of the contractile response, Ca(2+)-independent protein kinase C induced contraction, and direct regulation of cross-bridge cycling by the thin filament associated proteins caldesmon and calponin. The remainder of the symposium focused on three specific areas related to the regulation of vascular tone: Ca2+ signalling in relation to smooth muscle structure, structure-function relations of myosin, and the role of cyclic GMP (cGMP) dependent protein kinase. G.J. Kargacin described how smooth muscle cells are structured and how second messenger signals such as Ca2+ might be modified or influenced by this structure. J. Kendrick-Jones then discussed the results of mutagenesis studies aimed at understanding how the myosin light chains, particularly the phosphorylatable (Ca(2+)-calmodulin dependent) regulatory light chains, control myosin. The vasorelaxant effects of signalling molecules such as beta-adrenergic agents and nitrovasodilators are mediated by cyclic nucleotide dependent protein kinases, leading principally to a reduction in [Ca2+]i. T.M. Lincoln described the roles of cyclic nucleotide dependent protein kinases, in particular cyclic GMP dependent protein kinase, in vasodilation.
血管平滑肌收缩被认为是通过一种类似于横纹肌所描述的机制发生的,即通过横桥循环——滑行细丝机制。本次研讨会聚焦于Ca2+信号传导以及细胞内游离Ca2+浓度[Ca2+]i在调节血管张力中的作用:导致[Ca2+]i升高的收缩刺激如何触发血管收缩,以及舒张信号如何降低[Ca2+]i导致血管舒张。M.P. 沃尔什以概述的形式开启了研讨会,强调肌球蛋白磷酸化 - 去磷酸化在血管张力调节中的核心作用,并指出了有关[Ca2+]i调节、收缩反应的Ca2+致敏和脱敏、Ca(2+)非依赖性蛋白激酶C诱导的收缩以及细肌丝相关蛋白钙调蛋白和钙泊宁对横桥循环的直接调节的最新进展。研讨会的其余部分聚焦于与血管张力调节相关的三个特定领域:与平滑肌结构相关的Ca2+信号传导、肌球蛋白的结构 - 功能关系以及环鸟苷酸(cGMP)依赖性蛋白激酶的作用。G.J. 卡尔加辛描述了平滑肌细胞的结构以及诸如Ca2+等第二信使信号如何可能被这种结构修饰或影响。J. 肯德里克 - 琼斯随后讨论了诱变研究的结果,旨在了解肌球蛋白轻链,特别是可磷酸化的(Ca(2+) - 钙调蛋白依赖性)调节轻链如何控制肌球蛋白。诸如β - 肾上腺素能药物和硝基血管扩张剂等信号分子的血管舒张作用由环核苷酸依赖性蛋白激酶介导,主要导致[Ca2+]i降低。T.M. 林肯描述了环核苷酸依赖性蛋白激酶,特别是环GMP依赖性蛋白激酶在血管舒张中的作用。