Suppr超能文献

Hydrogen isotope effects in the reactions catalyzed by H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea.

作者信息

Klein A R, Hartmann G C, Thauer R K

机构信息

Max-Planck-Institut für terrestrische Mikrobiologie, Philipps-Universität Marburg, Germany.

出版信息

Eur J Biochem. 1995 Oct 1;233(1):372-6. doi: 10.1111/j.1432-1033.1995.372_1.x.

Abstract

H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase from methanogenic Archaea, which is a novel hydrogenase containing neither nickel nor iron-sulfur clusters, catalyzes the reversible reduction of N5,N10-methenyltetrahydomethanopterin (CH identical to H4MPT+) with H2 to N5,N10-methylenetetrahydromethanopterin (CH2 = H4MPT) and a proton (delta G degree' = -5.5 kJ/mol). The enzyme also catalyzes a CH identical to H4MPT(+)-dependent H2/H+ exchange. We report here on kinetic deuterium isotope effects in these reactions. When CH identical to H4MPT+ reduction was performed with D2 instead of H2, Vmax and the Km did not change. A primary isotope effect of 1 was found at all pH and temperatures tested and independent of whether H2O or D2O was the solvent. The findings indicate that a step other than the activation of H2 was rate-determining in CH identical to H4MPT+ reduction with H2. This was substantiated by the observation that also the CH identical to H4MPT(+)-dependent H2/H+ exchange reaction did not exhibit an appreciable deuterium isotope effect. Vmax for CH2 = H4MPT dehydrogenation to CH identical to H4MPT+ and H2 was only 2-3 times higher than for CD2 = H4MPT dehydrogenation to CD identical to H4MPT+ and HD. Such a small primary isotope effect indicates that the breakage of the C-H bond in the methylene group of CH2 = H4MPT was only rate-limiting when hydrogen was substituted by a deuterium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验