Suppr超能文献

UV irradiation and heat shock mediate JNK activation via alternate pathways.

作者信息

Adler V, Schaffer A, Kim J, Dolan L, Ronai Z

机构信息

Molecular Carcinogenesis Program, American Health Foundation, Valhalla, New York 10595, USA.

出版信息

J Biol Chem. 1995 Nov 3;270(44):26071-7. doi: 10.1074/jbc.270.44.26071.

Abstract

To elucidate cellular pathways involved in Jun-NH2-terminal kinase (JNK) activation by different forms of stress, we have compared the effects of UV irradiation, heat shock, and H2O2. Using mouse fibroblast cells (3T3-4A) we show that while H2O2 is ineffective, UV and heat shock (HS) are potent inducers of JNK. The cellular pathways that mediate JNK activation after HS or UV exposure are distinctly different as can be concluded from the following observations: (i) H2O2 is a potent inhibitor of HS-induced but not of UV-induced JNK activation; (ii) Triton X-100-treated cells abolish the ability of UV, but not HS, to activate JNK; (iii) the free radical scavenger N-acetylcysteine inhibits UV- but not HS-mediated JNK activation; (iv) N-acetylcysteine inhibition is blocked by H2O2 in a dose-dependent manner; (v) a Cockayne syndrome-derived cell line exhibits JNK activation upon UV exposure, but not upon HS treatment. The significance of Jun phosphorylation by JNK after treatment with UV, HS, or H2O2 was evaluated by measuring Jun phosphorylation in vivo and also its binding activity in gel shifts. HS and UV, which are potent inducers of JNK, increased the level of c-Jun phosphorylation when this was measured by [32P]orthophosphate labeling of 3T3-4A cultures. H2O2 had no such effect. Although H2O2 failed to activate JNK in vitro and to phosphorylate c-Jun in vivo, all three forms of stress were found to be potent inducers of binding to the AP1 target sequence. Overall, our data indicate that both membrane-associated components and oxidative damage are involved in JNK activation by UV irradiation, whereas HS-mediated JNK activation, which appears to be mitochondrial-related, utilizes cellular sensors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验