Ho M Y, Carter D A, Ang H L, Murphy D
Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore.
J Biol Chem. 1995 Nov 10;270(45):27199-205. doi: 10.1074/jbc.270.45.27199.
To gain insights into the molecular mechanisms that restrict the expression of the oxytocin gene to anatomically defined groups of neurons in the hypothalamus, we generated transgenic mice bearing bovine oxytocin genomic fragments. Appropriate neuron-specific and physiological regulation was observed in mice bearing transgene bOT3.5, which consists of the oxytocin structural gene flanked by 0.6 kilobase pair (kbp) of upstream and 1.9 kbp of downstream sequences. bOT3.5 is expressed in oxytocin magnocellular neurons in the mouse supraoptic nucleus and paraventricular nucleus, but transgene RNAs are excluded from vasopressin neurons. Replacement of the drinking diet of the transgenic mice with 2% (w/v) NaCl for 7 days significantly increased the abundance of bovine oxytocin transcripts in the supraoptic nucleus, but not in the paraventricular nucleus, in parallel with the endogenous mouse oxytocin RNA. Surprisingly, mimicry of the endogenous oxytocin gene expression pattern was lost with larger transgenes. Addition of 0.7 kbp of contiguous downstream sequences (transgene bOT) or linkage to the bovine vasopressin gene (transgene VP-B/bOT3.5) repressed hypothalamic expression. No mice were derived bearing transgene bOT6.4, which consists of the oxytocin structural gene flanked by 3 kbp of upstream and 2.6 kbp of downstream sequences, suggesting that the presence of this DNA is detrimental to normal embryonic development. These data suggest that while bOT3.5 contains sufficient cis-acting sequences to mediate expression to particular subsets of hypothalamic neurons, the overall regulation of the oxytocin gene is governed by multiple interacting enhancers and repressors.