Forman S D, Cohen J D, Fitzgerald M, Eddy W F, Mintun M A, Noll D C
Department of Psychiatry, University of Pittsburgh, PA 15213, USA.
Magn Reson Med. 1995 May;33(5):636-47. doi: 10.1002/mrm.1910330508.
The typical functional magnetic resonance (fMRI) study presents a formidable problem of multiple statistical comparisons (i.e., > 10,000 in a 128 x 128 image). To protect against false positives, investigators have typically relied on decreasing the per pixel false positive probability. This approach incurs an inevitable loss of power to detect statistically significant activity. An alternative approach, which relies on the assumption that areas of true neural activity will tend to stimulate signal changes over contiguous pixels, is presented. If one knows the probability distribution of such cluster sizes as a function of per pixel false positive probability, one can use cluster-size thresholds independently to reject false positives. Both Monte Carlo simulations and fMRI studies of human subjects have been used to verify that this approach can improve statistical power by as much as fivefold over techniques that rely solely on adjusting per pixel false positive probabilities.
典型的功能磁共振成像(fMRI)研究面临着多重统计比较这一艰巨问题(例如,在128×128的图像中,比较次数>10000次)。为防止出现假阳性结果,研究人员通常依靠降低每个像素的假阳性概率。这种方法不可避免地会导致检测具有统计学意义的活动的能力下降。本文提出了另一种方法,该方法基于这样的假设:真正的神经活动区域往往会在相邻像素上引发信号变化。如果已知此类簇大小的概率分布是每个像素假阳性概率的函数,那么就可以独立使用簇大小阈值来排除假阳性结果。蒙特卡罗模拟和对人类受试者的fMRI研究均已用于验证,与仅依靠调整每个像素假阳性概率的技术相比,这种方法可将统计能力提高多达五倍。