文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

想想看:神经科学图像的透明度可保留背景信息并明晰解读。

Go Figure: Transparency in neuroscience images preserves context and clarifies interpretation.

作者信息

Taylor Paul A, Aggarwal Himanshu, Bandettini Peter A, Barilari Marco, Bright Molly G, Caballero-Gaudes César, Calhoun Vince D, Chakravarty Mallar, Devenyi Gabriel A, Evans Jennifer W, Garza-Villarreal Eduardo A, Rasgado-Toledo Jalil, Gau Rémi, Glen Daniel R, Goebel Rainer, Gonzalez-Castillo Javier, Gulban Omer Faruk, Halchenko Yaroslav, Handwerker Daniel A, Hanayik Taylor, Lauren Peter D, Leopold David A, Lerch Jason P, Mathys Christian, McCarthy Paul, McLeod Anke, Mejia Amanda, Moia Stefano, Nichols Thomas E, Pernet Cyril, Pessoa Luiz, Pfleiderer Bettina, Rajendra Justin K, Reyes Laura D, Reynolds Richard C, Roopchansingh Vinai, Rorden Chris, Russ Brian E, Sundermann Benedikt, Thirion Bertrand, Torrisi Salvatore, Chen Gang

机构信息

Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, USA.

Inria, CEA, Université Paris-Saclay, Palaiseau, 91120, France.

出版信息

ArXiv. 2025 Apr 10:arXiv:2504.07824v1.


DOI:
PMID:40297230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12036441/
Abstract

Visualizations are vital for communicating scientific results. Historically, neuroimaging figures have only depicted regions that surpass a given statistical threshold. This practice substantially biases interpretation of the results and subsequent meta-analyses, particularly towards non-reproducibility. Here we advocate for a "transparent thresholding" approach that not only highlights statistically significant regions but also includes subthreshold locations, which provide key experimental context. This balances the dual needs of distilling modeling results and enabling informed interpretations for modern neuroimaging. We present four examples that demonstrate the many benefits of transparent thresholding, including: removing ambiguity, decreasing hypersensitivity to non-physiological features, catching potential artifacts, improving cross-study comparisons, reducing non-reproducibility biases, and clarifying interpretations. We also demonstrate the many software packages that implement transparent thresholding, several of which were added or streamlined recently as part of this work. A point-counterpoint discussion addresses issues with thresholding raised in real conversations with researchers in the field. We hope that by showing how transparent thresholding can drastically improve the interpretation (and reproducibility) of neuroimaging findings, more researchers will adopt this method.

摘要

可视化对于传达科学成果至关重要。从历史上看,神经影像学图像仅描绘超过给定统计阈值的区域。这种做法极大地偏向于对结果的解释以及后续的荟萃分析,尤其容易导致不可重复性。在此,我们倡导一种“透明阈值设定”方法,该方法不仅突出具有统计学意义的区域,还包括亚阈值位置,这些位置提供了关键的实验背景。这平衡了提炼建模结果和为现代神经影像学进行明智解释的双重需求。我们给出四个例子,展示透明阈值设定的诸多益处,包括:消除歧义、降低对非生理特征的过度敏感、捕捉潜在伪影、改善跨研究比较、减少不可重复性偏差以及阐明解释。我们还展示了许多实现透明阈值设定的软件包,其中一些是作为这项工作的一部分最近添加或简化的。一场针锋相对的讨论解决了与该领域研究人员实际交流中提出的阈值设定问题。我们希望通过展示透明阈值设定如何能极大地改善神经影像学研究结果的解释(以及可重复性),更多研究人员将采用这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/1c5d491e7648/nihpp-2504.07824v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/ed945ad9eb7e/nihpp-2504.07824v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/38f389a01602/nihpp-2504.07824v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/d41a9c0818b1/nihpp-2504.07824v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/04598bc0d141/nihpp-2504.07824v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/26d3a1be6648/nihpp-2504.07824v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/60c4aac964dc/nihpp-2504.07824v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/1c5d491e7648/nihpp-2504.07824v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/ed945ad9eb7e/nihpp-2504.07824v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/38f389a01602/nihpp-2504.07824v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/d41a9c0818b1/nihpp-2504.07824v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/04598bc0d141/nihpp-2504.07824v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/26d3a1be6648/nihpp-2504.07824v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/60c4aac964dc/nihpp-2504.07824v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2acf/12036441/1c5d491e7648/nihpp-2504.07824v1-f0007.jpg

相似文献

[1]
Go Figure: Transparency in neuroscience images preserves context and clarifies interpretation.

ArXiv. 2025-4-10

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Developing evidence-based guidelines for describing potential benefits and harms within patient information leaflets/sheets (PILs) that inform and do not cause harm (PrinciPILs).

Health Technol Assess. 2025-8

[4]
Short-Term Memory Impairment

2025-1

[5]
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.

Cochrane Database Syst Rev. 2008-7-16

[6]
Patient buy-in to social prescribing through link workers as part of person-centred care: a realist evaluation.

Health Soc Care Deliv Res. 2024-9-25

[7]
"A System That Wasn't Really Optimized for Me": Factors Influencing Autistic University Students' Access to Information.

Autism Adulthood. 2025-4-3

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Digital interventions in mental health: evidence syntheses and economic modelling.

Health Technol Assess. 2022-1

[10]
Fabricating mice and dementia: opening up relations in multi-species research

2025-2-25

本文引用的文献

[1]
On the analysis of functional PET (fPET)-FDG: Baseline mischaracterization can introduce artifactual metabolic (de)activations.

Imaging Neurosci (Camb). 2025-8-28

[2]
Statistical inference for same data meta-analysis in neuroimaging multiverse analyzes.

Imaging Neurosci (Camb). 2025-3-31

[3]
The tip of the iceberg: A call to embrace anti-localizationism in human neuroscience research.

Imaging Neurosci (Camb). 2024

[4]
Sources of information waste in neuroimaging: mishandling structures, thinking dichotomously, and over-reducing data.

Apert Neuro. 2022

[5]
Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control.

Imaging Neurosci (Camb). 2025-2-10

[6]
Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls.

Nat Ment Health. 2024

[7]
Processing, evaluating, and understanding FMRI data with afni_proc.py.

Imaging Neurosci (Camb). 2024-11-12

[8]
A Set of FMRI Quality Control Tools in AFNI: Systematic, in-depth, and interactive QC with afni_proc.py and more.

Imaging Neurosci (Camb). 2024-8-2

[9]
Seeing more than the Tip of the Iceberg: Approaches to Subthreshold Effects in Functional Magnetic Resonance Imaging of the Brain.

Clin Neuroradiol. 2024-9

[10]
Data science opportunities of large language models for neuroscience and biomedicine.

Neuron. 2024-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索