Taylor Paul A, Aggarwal Himanshu, Bandettini Peter A, Barilari Marco, Bright Molly G, Caballero-Gaudes César, Calhoun Vince D, Chakravarty Mallar, Devenyi Gabriel A, Evans Jennifer W, Garza-Villarreal Eduardo A, Rasgado-Toledo Jalil, Gau Rémi, Glen Daniel R, Goebel Rainer, Gonzalez-Castillo Javier, Gulban Omer Faruk, Halchenko Yaroslav, Handwerker Daniel A, Hanayik Taylor, Lauren Peter D, Leopold David A, Lerch Jason P, Mathys Christian, McCarthy Paul, McLeod Anke, Mejia Amanda, Moia Stefano, Nichols Thomas E, Pernet Cyril, Pessoa Luiz, Pfleiderer Bettina, Rajendra Justin K, Reyes Laura D, Reynolds Richard C, Roopchansingh Vinai, Rorden Chris, Russ Brian E, Sundermann Benedikt, Thirion Bertrand, Torrisi Salvatore, Chen Gang
Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, USA.
Inria, CEA, Université Paris-Saclay, Palaiseau, 91120, France.
ArXiv. 2025 Apr 10:arXiv:2504.07824v1.
Visualizations are vital for communicating scientific results. Historically, neuroimaging figures have only depicted regions that surpass a given statistical threshold. This practice substantially biases interpretation of the results and subsequent meta-analyses, particularly towards non-reproducibility. Here we advocate for a "transparent thresholding" approach that not only highlights statistically significant regions but also includes subthreshold locations, which provide key experimental context. This balances the dual needs of distilling modeling results and enabling informed interpretations for modern neuroimaging. We present four examples that demonstrate the many benefits of transparent thresholding, including: removing ambiguity, decreasing hypersensitivity to non-physiological features, catching potential artifacts, improving cross-study comparisons, reducing non-reproducibility biases, and clarifying interpretations. We also demonstrate the many software packages that implement transparent thresholding, several of which were added or streamlined recently as part of this work. A point-counterpoint discussion addresses issues with thresholding raised in real conversations with researchers in the field. We hope that by showing how transparent thresholding can drastically improve the interpretation (and reproducibility) of neuroimaging findings, more researchers will adopt this method.
可视化对于传达科学成果至关重要。从历史上看,神经影像学图像仅描绘超过给定统计阈值的区域。这种做法极大地偏向于对结果的解释以及后续的荟萃分析,尤其容易导致不可重复性。在此,我们倡导一种“透明阈值设定”方法,该方法不仅突出具有统计学意义的区域,还包括亚阈值位置,这些位置提供了关键的实验背景。这平衡了提炼建模结果和为现代神经影像学进行明智解释的双重需求。我们给出四个例子,展示透明阈值设定的诸多益处,包括:消除歧义、降低对非生理特征的过度敏感、捕捉潜在伪影、改善跨研究比较、减少不可重复性偏差以及阐明解释。我们还展示了许多实现透明阈值设定的软件包,其中一些是作为这项工作的一部分最近添加或简化的。一场针锋相对的讨论解决了与该领域研究人员实际交流中提出的阈值设定问题。我们希望通过展示透明阈值设定如何能极大地改善神经影像学研究结果的解释(以及可重复性),更多研究人员将采用这种方法。
2025-1
Cochrane Database Syst Rev. 2008-7-16
Health Soc Care Deliv Res. 2024-9-25
Health Technol Assess. 2022-1
Imaging Neurosci (Camb). 2025-8-28
Imaging Neurosci (Camb). 2025-3-31
Imaging Neurosci (Camb). 2024
Imaging Neurosci (Camb). 2025-2-10
Imaging Neurosci (Camb). 2024-11-12
Imaging Neurosci (Camb). 2024-8-2