Suppr超能文献

In vivo cleavability of a disulfide-based chimeric opioid peptide in rat brain.

作者信息

Bickel U, Kang Y S, Pardridge W M

机构信息

Department of Medicine, UCLA School of Medicine 90024, USA.

出版信息

Bioconjug Chem. 1995 Mar-Apr;6(2):211-8. doi: 10.1021/bc00032a009.

Abstract

Brain delivery of systemically administered neuropeptide drugs may be achieved by the synthesis of chimeric peptides, wherein the peptide is coupled to transport vectors via avidin-biotin technology. The present study focuses on factors that optimize the linkage of drugs to transport vectors. The vector is the OX26 monoclonal antibody to the transferrin receptor, and the model peptide used in these studies is [Lys7]dermorphin (K7DA). The K7DA is monobiotinylated at the epsilon-amino group of the Lys7 residue with either a cleavable linker, e.g., disulfide, using NHS-SS-biotin, or a noncleavable linker, e.g., amide, using NHS-XX-biotin. Disulfide cleavage of the biotinylated derivative yields the desbiotinylated peptide, which is thiolated. Structures of the K7DA analogues were confirmed by secondary ion mass spectrometry. The biotinylated peptides were coupled to a thiol-ether conjugate of the OX26 antibody and either neutral avidin (NLA) or streptavidin. The binding constants (Ki) of the K7DA, the biotinylated K7DA (bio-XX-K7DA), the desbiotinylated K7DA, and the bio-XX-KD7A conjugated to NLA-OX26 were 0.62 +/- 0.14, 1.59 +/- 0.27, 1.24 +/- 0.24, and > 10 nM, respectively, and were determined with a mu-opioid peptide radioreceptor assay. Comparable results were obtained with in vivo tail-flick analgesia testing following intracerebroventricular (icv) injection of opioid chimeric peptides. Reversibility of pharmacologic action of thiolated peptide was demonstrated by icv naloxone administration. The cleavability of the disulfide linker in vivo in rat plasma and brain was assessed with gel filtration HPLC and internal carotid artery perfusion of labeled opioid chimeric peptides.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验