Suppr超能文献

Use of quantitative ultrastructural immunoperoxidase labeling for analysis of catecholamine neurotoxicity and plasticity.

作者信息

Pickel V M, Chan J

机构信息

Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA.

出版信息

Neurochem Int. 1995 Feb;26(2):125-34. doi: 10.1016/0197-0186(94)00107-6.

Abstract

Levels of catecholamines and the synthesizing enzyme, tyrosine hydroxylase (TH) are markedly decreased in the dorsal striatum, caudate-putamen nuclei, following neurotoxic lesions with 6-hydroxy-dopamine (6-OHDA). We examined whether pre-embedding immunoperoxidase labeling of TH could be standardized for quantitatively examining the density and ultrastructure of spared dopaminergic terminals in the striatum of lesioned rats. The peroxidase-antiperoxidase (PAP) method was used to localize rabbit antiserum against TH in caudate-putamen nuclei of adult rats given unilateral nigral injections of either vehicle or 6-hydroxydopamine in the early postnatal period. Experimental differences in fixation and immunocytochemical labeling were minimized by limiting comparisons of immunoreactivity to co-processed sections from the same litters of animals. Imaging software and a Phillips CM-10 electron microscope were used to quantitatively examine immunoreactive profiles in a narrow zone of tissue in contact with the embedding resin. Under these conditions variables attributed to differences in penetration were minimized. There were no significant differences in numbers or mean-cross sectional diameter of immunoreactive terminals in striatum ipsilateral versus contralateral to vehicle injections. Ipsilateral to the 6-OHDA injections, the density (numbers/area) of striatal TH-immunoreactive terminals was reduced by 50-90% in the majority of animals. In the most extensively lesioned rats, the cross-sectional areas of the remaining immunoreactive axons were significantly larger than in the contralateral striatum of the same animal or either hemisphere of vehicle injected controls. These results confirm and extend earlier findings on the plasticity of residual dopaminergic terminals in adult animals after neurotoxic damage. They also establish a quantitative method for ultrastructural analysis of the density of immunoreactivity in thick sections of tissue labeled prior to plastic embedding. The method has broad applicability to quantitative studies of neurotoxicity and plasticity in brain.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验