Ishii Y, Saito Y, Fujimura T, Sasaki H, Noguchi Y, Yamada H, Niwa M, Shimomura K
Pharmacological Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan.
Eur J Biochem. 1995 Jun 1;230(2):773-8.
A cephalosporin acylase from Pseudomonas strain N176 hydrolyses both 7-beta-(4-carboxybutanamido)-cephalosporanic acid (glutarylcephalosporanic acid) and cephalosporin C to 7-amino-cephalosporanic acid. However, its productivity in the original host was low and its activity against cephalosporin C was not sufficient for direct large-scale production of 7-amino-cephalosporanic acid. In order to overcome these problems, we established a high-level expression system for the acylase in Escherichia coli. Tyr270 in the acylase is reported to play an important role in the interaction with glutarylcephalosporanic acid, as determined from the reaction with an affinity-label reagent, 7 beta-(6-bromohexanoylamido) cephalosporanic acid [Ishii, Y., Saito, Y., Sasaki, H., Uchiyama, F., Hayashi, M., Nakamura, S. & Niwa, M. (1994) J. Ferment. Bioeng. 77, 598-603] and modification with tetranitromethane [Nobbs, T. J., Ishii, Y., Fujimura, T., Saito, Y. & Niwa, M. (1994) J. Ferment. Bioeng. 77, 604-609]. From carbamoylation with potassium cyanate and site-directed point mutagenesis of the cephalosporin C acylase, we have deduced that Tyr270 exists at a position where it can interact with a residue (possibly Ser239) corresponding to inactivation by carbamoylation. We mutated Met269 and Ala271 of the acylase and found that mutation of Met269 to Tyr or Phe caused a 1.6-fold and 1.7-fold increase, respectively, of specific activity against cephalosporin C as compared to that of the wild-type enzyme. Kinetic studies of these mutants revealed that their kcat values increased, although their Km values against cephalosporin C were not changed. These data indicate that the mutation of Met269 near Tyr270 induces a minor conformational change to increase the stability of the activated complex with the enzyme and cephalosporin C. In particular, a mutant in which Met269 was replaced by Tyr was 2.5-fold more efficient in converting cephalosporin C to 7-amino-cephalosporanic acid than the wild-type enzyme under conditions similar to those in a bio-reactor system.
来自假单胞菌菌株N176的头孢菌素酰基转移酶可将7-β-(4-羧基丁酰胺基)-头孢烷酸(戊二酰头孢烷酸)和头孢菌素C都水解为7-氨基头孢烷酸。然而,其在原始宿主中的生产力较低,且其对头孢菌素C的活性不足以直接大规模生产7-氨基头孢烷酸。为了克服这些问题,我们在大肠杆菌中建立了该酰基转移酶的高效表达系统。据报道,酰基转移酶中的Tyr270在与戊二酰头孢烷酸的相互作用中起重要作用,这是通过与亲和标记试剂7-β-(6-溴己酰胺基)头孢烷酸的反应[石井洋、斋藤洋、佐佐木浩、内山文夫、林正、中村修、丹羽正(1994年)《发酵与生物工程杂志》77卷,598 - 603页]以及用四硝基甲烷进行修饰[诺布斯·T·J、石井洋、藤村隆、斋藤洋、丹羽正(1994年)《发酵与生物工程杂志》77卷,604 - 609页]确定的。通过用氰酸钾进行氨甲酰化以及对头孢菌素C酰基转移酶进行定点诱变,我们推断Tyr270所处位置使其能够与对应于氨甲酰化失活的一个残基(可能是Ser239)相互作用。我们对酰基转移酶的Met269和Ala271进行了突变,发现将Met269突变为Tyr或Phe后,与野生型酶相比,对头孢菌素C的比活性分别提高了1.6倍和1.7倍。对这些突变体的动力学研究表明,尽管它们对头孢菌素C的Km值未改变,但其kcat值增加了。这些数据表明,Tyr270附近的Met269突变诱导了微小的构象变化,以增加酶与头孢菌素C形成的活化复合物的稳定性。特别是,在类似于生物反应器系统的条件下,Met269被Tyr取代的突变体将头孢菌素C转化为7-氨基头孢烷酸的效率比野生型酶高2.5倍。