Suppr超能文献

头孢菌素酰化酶的底物进入和结合的建模。

Modelling of substrate access and substrate binding to cephalosporin acylases.

机构信息

Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Sci Rep. 2019 Aug 27;9(1):12402. doi: 10.1038/s41598-019-48849-z.

Abstract

Semisynthetic cephalosporins are widely used antibiotics currently produced by different chemical steps under harsh conditions, which results in a considerable amount of toxic waste. Biocatalytic synthesis by the cephalosporin acylase from Pseudomonas sp. strain N176 is a promising alternative. Despite intensive engineering of the enzyme, the catalytic activity is still too low for a commercially viable process. To identify the bottlenecks which limit the success of protein engineering efforts, a series of MD simulations was performed to study for two acylase variants (WT, M6) the access of the substrate cephalosporin C from the bulk to the active site and the stability of the enzyme-substrate complex. In both variants, cephalosporin C was binding to a non-productive substrate binding site (E86α, S369β, S460β) at the entrance to the binding pocket, preventing substrate access. A second non-productive binding site (G372β, W376β, L457β) was identified within the binding pocket, which competes with the active site for substrate binding. Noteworthy, substrate binding to the protein surface followed a Langmuir model resulting in binding constants K = 7.4 and 9.2 mM for WT and M6, respectively, which were similar to the experimentally determined Michaelis constants K = 11.0 and 8.1 mM, respectively.

摘要

半合成头孢菌素是目前广泛使用的抗生素,其生产需要在苛刻条件下通过不同的化学步骤进行,这会产生大量有毒废物。由假单胞菌属 N176 产头孢菌素酰化酶进行生物催化合成是一种很有前途的替代方法。尽管对该酶进行了深入的工程改造,但催化活性仍然太低,无法进行商业可行的生产。为了确定限制蛋白工程努力成功的瓶颈,进行了一系列 MD 模拟,以研究两种酰化酶变体(WT、M6)中头孢菌素 C 底物从本体进入活性位点的途径以及酶-底物复合物的稳定性。在这两种变体中,头孢菌素 C 与非生产性的底物结合位点(E86α、S369β、S460β)结合,位于结合口袋的入口处,从而阻止了底物的进入。在结合口袋内还鉴定出第二个非生产性结合位点(G372β、W376β、L457β),它与活性位点竞争底物结合。值得注意的是,底物与蛋白质表面的结合遵循 Langmuir 模型,导致 WT 和 M6 的结合常数 K 分别为 7.4 和 9.2 mM,这与实验测定的米氏常数 K 分别为 11.0 和 8.1 mM 相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f27/6712217/189016409165/41598_2019_48849_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验