Suppr超能文献

癌症筛查的统计模型

Statistical models for cancer screening.

作者信息

Stevenson C E

机构信息

National Centre for Epidemiology and Population Health, Australian National University, Canberra.

出版信息

Stat Methods Med Res. 1995 Mar;4(1):18-32. doi: 10.1177/096228029500400103.

Abstract

This paper reviews the application of statistical models to planning and evaluating cancer screening programmes. Models used to analyse screening strategies can be classified as either surface models, which consider only those events which can be directly observed such as disease incidence, prevalence or mortality, or deep models, which incorporate hypotheses about the disease process that generates the observed events. This paper focuses on the latter type. These can be further classified as analytic models, which use a model of the disease to derive direct estimates of characteristics of the screening procedure and its consequent benefits, and simulation models, which use the disease model to simulate the course of the disease in a hypothetical population with and without screening and derive measures of the benefit of screening from the simulation outcomes. The main approaches to each type of model are described and an overview given of their historical development and strengths and weaknesses. A brief review of fitting and validating such models is given and finally a discussion of the current state of, and likely future trends in, cancer screening models is presented.

摘要

本文综述了统计模型在癌症筛查项目规划与评估中的应用。用于分析筛查策略的模型可分为表面模型和深度模型。表面模型仅考虑那些可直接观察到的事件,如疾病发病率、患病率或死亡率;而深度模型则纳入了关于产生观察到的事件的疾病过程的假设。本文重点关注后一种类型。深度模型可进一步分为分析模型和模拟模型。分析模型利用疾病模型直接估计筛查程序的特征及其相应益处;模拟模型则利用疾病模型在有筛查和无筛查的假设人群中模拟疾病进程,并从模拟结果中得出筛查益处的衡量指标。文中描述了每种模型类型的主要方法,并概述了它们的历史发展、优缺点。还简要回顾了此类模型的拟合和验证过程,最后讨论了癌症筛查模型的现状及未来可能的发展趋势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验