Marchand J B, Moreau P, Paoletti A, Cossart P, Carlier M F, Pantaloni D
Laboratorie d'Enzymologie, CNRS, Gif-sur-Yvette, France.
J Cell Biol. 1995 Jul;130(2):331-43. doi: 10.1083/jcb.130.2.331.
The thermodynamic basis for actin-based motility of Listeria monocytogenes has been investigated using cytoplasmic extracts of Xenopus eggs, initially developed by Theriot et al. (Theriot, J. A., J. Rosenblatt, D. A. Portnoy, P. J. Goldschmidt-Clermont, and T. J. Mitchison. 1994. Cell. 76:505-517) as an in vitro cell-free system. A large proportion (75%) of actin was found unpolymerized in the extracts. The amount of unassembled actin (12 microM) is accounted for by the sequestering functions of T beta 4Xen (20 microM) and profilin (5 microM), the barbed ends being capped. Movement of Listeria was not abolished by depletion of over 99% of the endogenous profilin. The proline-rich sequences of ActA are unlikely to be the target of profilin. All data support the view that actin assembly at the rear of Listeria results from a local shift in steady state due to a factor, keeping filaments uncapped, bound to the surface of the bacterium, while barbed ends are capped in the bulk cytoplasm. Movement is controlled by the energetic difference (i.e., the difference in critical concentration) between the two ends of the filaments, hence a constant ATP supply and the presence of barbed end capped F-actin in the medium are required to buffer free G-actin at a high concentration. The role of membrane components is demonstrated by the facts that: (a) Listeria movement can be reconstituted in the resuspended pellets of high speed-centrifuged extracts that are enriched in membranes; (b) Actin-based motility of endogenous vesicles, exhibiting the same rocketing movement as Listeria, can be observed in the extracts.
利用非洲爪蟾卵的细胞质提取物,对单核细胞增生李斯特菌基于肌动蛋白的运动的热力学基础进行了研究。该提取物最初由泰里奥特等人开发(泰里奥特,J. A.,J. 罗森布拉特,D. A. 波特诺伊,P. J. 戈德施密特 - 克莱蒙特,和T. J. 米奇森。1994年。《细胞》。76:505 - 517),作为一种体外无细胞系统。发现提取物中很大一部分(75%)的肌动蛋白未聚合。未组装的肌动蛋白量(12微摩尔)由Tβ4Xen(20微摩尔)和肌动蛋白单体结合蛋白(5微摩尔)的隔离功能所解释,其带刺末端被封端。超过99%的内源性肌动蛋白单体结合蛋白耗尽后,李斯特菌的运动并未被消除。ActA富含脯氨酸的序列不太可能是肌动蛋白单体结合蛋白的作用靶点。所有数据支持这样一种观点,即李斯特菌后部的肌动蛋白组装是由于一种与细菌表面结合的因子导致稳态的局部转变,该因子使细丝的末端不被封端,而在大量细胞质中带刺末端被封端。运动由细丝两端的能量差异(即临界浓度差异)控制,因此需要持续供应ATP以及培养基中存在带刺末端封端的F - 肌动蛋白,以将游离G - 肌动蛋白缓冲在高浓度。膜成分的作用通过以下事实得以证明:(a)在富含膜的高速离心提取物的重悬沉淀中可以重建李斯特菌的运动;(b)在提取物中可以观察到内源性囊泡基于肌动蛋白的运动,其表现出与李斯特菌相同的快速移动。