Suppr超能文献

Transglutaminase C in cerebellar granule neurons: regulation and localization of substrate cross-linking.

作者信息

Perry M J, Mahoney S A, Haynes L W

机构信息

School of Biological Sciences, University of Bristol, UK.

出版信息

Neuroscience. 1995 Apr;65(4):1063-76. doi: 10.1016/0306-4522(94)00556-k.

Abstract

Covalent cross-linking of cell surface proteins by the calcium-dependent enzyme transglutaminase C may be implicated in cell-cell interactions and growth regulation. We demonstrate the presence of the enzyme in rat cerebellar cortex during postnatal development. Transglutaminase C was induced in cerebellar granule neurons in culture by retinoic acid, dibutyryl- and 8-bromo-cyclic AMP analogues and by cultivation on a biomatrix substratum. Cyclic AMP analogues stimulated transglutaminase activity in protein synthesis-dependent and -independent phases. The enzyme was distributed at focal adhesion sites on the axon. By calcium-dependent covalent incorporation of the primary amine acceptor substrate, 5-(biotinamido)pentylamine, an increase in the Ca(2+)-dependent cross-linking of at least 11 substrate proteins in the presence of retinoic acid and dibutyryl-cyclic AMP was detected. Of these substrates, a subset was labelled on the surface of living granule neurons. A low-molecular-weight substrate, p18, was tentatively identified as the retinoic acid-inducible neurite-promoting factor, midkine. Transglutaminase-mediated amine incorporation, midkine and isopeptide cross-links were co-localized to axonal adhesion sites. The results provide evidence of transglutaminase C-catalysed protein cross-linking activity in cerebellar granule neurons and its possible implication in cell-substratum interactions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验