Suppr超能文献

Stimulation of protein phosphatases as a mechanism of the muscarinic-receptor-mediated inhibition of cardiac L-type Ca2+ channels.

作者信息

Herzig S, Meier A, Pfeiffer M, Neumann J

机构信息

Institut für Pharmakologie, Universität Kiel, Germany.

出版信息

Pflugers Arch. 1995 Feb;429(4):531-8. doi: 10.1007/BF00704158.

Abstract

Acetylcholine decreases currents through cardiac L-type Ca2+ channels after stimulation with agents which elevate levels of cyclic adenosine monophosphate, such as isoproterenol, but there is still a controversy over the mechanisms of this muscarinic effect. We tested the hypothesis of whether, after isoproterenol stimulation, protein phosphatases are activated by acetylcholine. Whole-cell currents were recorded from guinea-pig ventricular myocytes. The effect of 10(-5) M acetylcholine on currents induced by 10(-8) M isoproterenol was studied in the absence or presence of protein phosphatase inhibitors. Three agents reduced the acetylcholine response: okadaic acid (3 or 9 x 10(-6) M) and cantharidin (3 x 10(-6) M) added to the pipette solution, and bath-applied fluoride (3 mM). In contrast, pipette application of other phosphatase inhibitors, namely the inhibitor PPI2 (1000 U/ml), ciclosporin (10(-5) M), or calyculin A (10(-6) M) did not significantly diminish the acetylcholine effect. Interestingly, there was no correlation between the effects of the compounds on basal Ca2+ current and their interference with the muscarinic response. An activation of type 2A phosphatases by acetylcholine would explain these findings. Indeed, okadaic acid is 3 orders of magnitude more potent in vitro in its inhibition of this isoform (purified from cardiac myocytes) than is calyculin A, while type-1 phosphatases are inhibited equally. The data support the attractive possibility that stimulation of protein phosphatases is part of the signal transduction cascade of Ca2+ channel inhibition by acetylcholine.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验