Suppr超能文献

1,1-二氯乙烯对小鼠的肾毒性机制

Nephrotoxicity mechanism of 1,1-dichloroethylene in mice.

作者信息

Ban M, Hettich D, Huguet N, Cavelier L

机构信息

Service Toxicologie Industrielle Expérimentale, Institut National de Recherche et de Sécurité, Vandoeuvre, France.

出版信息

Toxicol Lett. 1995 Jul;78(2):87-92. doi: 10.1016/0378-4274(94)03237-2.

Abstract

Male Swiss OF1 mice were administered orally with a single dose (200 mg/kg) of 1,1-dichloroethylene (DCE). Examination of cryostat kidney sections stained for alkaline phosphatase (APP) revealed damage to about 50% of the proximal tubules at 8 h following DCE administration. Pretreatment with the anionic transport inhibitor probenecid by i.p., (0.75 mmol/kg, 30 min prior to and 10 min and 5 h following DCE administration) and with the gamma-glutamyltranspeptidase (GGT) inactivator acivicin by gavage and i.p. (50 mg/kg, 1 h and 30 min prior to DCE administration) failed to prevent DCE-induced renal toxicity. Pretreatment with the beta-lyase inactivator amino-oxyacetic acid (AOAA) by gavage (100 mg/kg, 30 min prior to and 10 min and 5 h following DCE administration), and with the renal cysteine conjugate S-oxidase inhibitor methimazole by i.p. (40 mg/kg, 30 min prior to DCE administration) reduced the number of damaged tubules by approximately 50 and 60%, respectively in mice treated with DCE. The results suggest that the DCE undergoes biotransformation by NADPH-cytochrome P450 to several reactive species which conjugate with glutathione (GSH). After arriving in the kidneys, the resulting conjugates reach the renal cells by a mechanism which depends on neither GGT, nor on an anionic transport system which is sensitive to probenecid. Once in the cells, the presumed GSH conjugates and/or their derivatives undergo secondary modification by beta-lyase and cysteine conjugate S-oxidase to reactive metabolite(s).

摘要

给雄性瑞士OF1小鼠口服单剂量(200毫克/千克)的1,1 - 二氯乙烯(DCE)。对经碱性磷酸酶(APP)染色的低温恒温器肾脏切片进行检查发现,在给予DCE后8小时,约50%的近端小管受到损伤。通过腹腔注射(0.75毫摩尔/千克,在给予DCE前30分钟以及给予DCE后10分钟和5小时)用阴离子转运抑制剂丙磺舒进行预处理,以及通过灌胃和腹腔注射(50毫克/千克,在给予DCE前1小时和30分钟)用γ-谷氨酰转肽酶(GGT)灭活剂阿西维辛进行预处理,均未能预防DCE诱导的肾毒性。通过灌胃(100毫克/千克,在给予DCE前30分钟以及给予DCE后10分钟和5小时)用β-裂解酶灭活剂氨基氧乙酸(AOAA)进行预处理,以及通过腹腔注射(40毫克/千克,在给予DCE前30分钟)用肾半胱氨酸结合物S-氧化酶抑制剂甲巯咪唑进行预处理,在用DCE处理的小鼠中,受损小管的数量分别减少了约50%和60%。结果表明,DCE通过NADPH - 细胞色素P450进行生物转化为几种与谷胱甘肽(GSH)结合的反应性物质。到达肾脏后,产生的结合物通过一种既不依赖GGT也不依赖对丙磺舒敏感的阴离子转运系统的机制到达肾细胞。一旦进入细胞,推测的GSH结合物和/或其衍生物通过β-裂解酶和半胱氨酸结合物S-氧化酶进行二次修饰形成反应性代谢物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验