Suppr超能文献

Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo.

作者信息

Sauvageau G, Thorsteinsdottir U, Eaves C J, Lawrence H J, Largman C, Lansdorp P M, Humphries R K

机构信息

Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.

出版信息

Genes Dev. 1995 Jul 15;9(14):1753-65. doi: 10.1101/gad.9.14.1753.

Abstract

Hox genes were first recognized for their role in embryonic development and may also play important lineage-specific functions in a variety of somatic tissues including the hematopoietic system. We have recently shown that certain members of the Hox A and B clusters, such as HOXB3 and HOXB4, are preferentially expressed in subpopulations of human bone marrow that are highly enriched for the most primitive hematopoietic cell types. To assess the role these genes may play in regulating the proliferation and/or differentiation of such cells, we engineered the overexpression of HOXB4 in murine bone marrow cells by retroviral gene transfer and analyzed subsequent effects on the behavior of various hematopoietic stem and progenitor cell populations both in vitro and in vivo. Serial transplantation studies revealed a greatly enhanced ability of HOXB4-transduced bone marrow cells to regenerate the most primitive hematopoietic stem cell compartment resulting in 50-fold higher numbers of transplantable totipotent hematopoietic stem cells in primary and secondary recipients, compared with serially passaged neo-infected control cells. This heightened expansion in vivo of HOXB4-transduced hematopoietic stem cells was not accompanied by identifiable anomalies in the peripheral blood of these mice. Enhanced proliferation in vitro of day-12 CFU-S and clonogenic progenitors was also documented. These results indicate HOXB4 to be an important regulator of very early but not late hematopoietic cell proliferation and suggest a new approach to the controlled amplification of genetically modified hematopoietic stem cell populations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验