Lamborghini J E, Revenaugh M, Spitzer N C
J Comp Neurol. 1979 Feb 15;183(4):741-52. doi: 10.1002/cne.901830405.
We have examined the ultrastructure of the cell body of a vertebrate spinal neuron, the Rohon-Beard cell of Xenopus laevis, at four stages during its development (Nieuwkoop and Faber stages: 22, 29/30, 37/38 and 42). At this time it has attained its electrical excitability and the action potential mechanism in the cell body is maturing through a sequence of stages in which the inward current is carried by Ca++ (stages 20-25), later by Ca++ and Na+ (stages 25-40), and finally by Na+ (stages 40-51) (Spitzer and Baccaglini, '76; Baccaglini and Spitzer, '77). There is a change in the abundance and distribution of the organelles in the perikaryon during this period, characteristic of other developing neurons. Mitochondria and Golgi apparatus become localized progressively more in the interior of the cells, and rough endoplasmic reticulum progressively more to the periphery where it often appears in orderly tiers parallel to the plasma membrane. The mitochondria contain dense intramitochondrial granules which are known in other cells to contain concentrations of divalent cations. The number of granules declines over the course of the developmental period studied. The presence of the intramitochondrial granules was examined quantitatively because electrophysiological data indicate that the amount of Ca++ entering the cells in early stages should raise the internal Ca++ concentration by several orders of magnitude, and that Ca++ is rapidly sequestered (Baccaglini and Spitzer, '77). A minimum of 200 mitochondrial profiles from at least four Rohon-Beard cells were scored for the presence of dense intramitochondrial granules at each stage studied. In stage 22 Rohon-Beard cells 75 +/- 5% (mean +/- SD, n = 4) of the mitochondrial profiles scored contained granules; in stage 29/30, 56 +/- 10% (n = 7); in stage 37/38, 3 +/- 3% (n = 5); and in stage 42, 0.5 +/- 0.25% (n = 4). Therefore, dense intramitochondrial granules, an indication of calcium accumulation in mitochondria, decrease in parallel with the loss of the Ca++ component of the inward current of the action potential in Rohon-Beard neurons.
我们研究了脊椎动物脊髓神经元——非洲爪蟾的罗霍恩 - 比尔兹利细胞在发育的四个阶段(尼乌科普和法伯分期:22、29/30、37/38和42期)的细胞体超微结构。此时它已具备电兴奋性,细胞体中的动作电位机制正通过一系列阶段逐渐成熟,在这些阶段中,内向电流最初由Ca++携带(20 - 25期),之后由Ca++和Na+携带(25 - 40期),最后由Na+携带(40 - 51期)(斯皮策和巴卡利尼,1976年;巴卡利尼和斯皮策,1977年)。在此期间,核周质中细胞器的丰度和分布发生了变化,这是其他发育中神经元的特征。线粒体和高尔基体逐渐更多地定位于细胞内部,而粗面内质网则逐渐更多地分布于外周,在外周它常常呈与质膜平行的有序层状排列。线粒体含有致密的线粒体内颗粒,在其他细胞中已知这些颗粒含有二价阳离子的浓缩物。在所研究的发育阶段过程中,颗粒数量减少。对线粒体内颗粒的存在进行了定量检测,因为电生理数据表明,早期进入细胞的Ca++量应使细胞内Ca++浓度提高几个数量级,并且Ca++会迅速被隔离(巴卡利尼和斯皮策,1977年)。在每个研究阶段,对至少四个罗霍恩 - 比尔兹利细胞的至少200个线粒体轮廓进行评分,以确定是否存在致密的线粒体内颗粒。在22期的罗霍恩 - 比尔兹利细胞中,75±5%(平均值±标准差,n = 4)的评分线粒体轮廓含有颗粒;在29/30期,为56±10%(n = 7);在37/38期,为3±3%(n = 5);在42期,为0.5±0.25%(n = 4)。因此,致密的线粒体内颗粒是线粒体中钙积累的一个指标,它与罗霍恩 - 比尔兹利神经元动作电位内向电流中Ca++成分的丧失同时减少。