Savage M P, Fallon J F
Anatomy Department, University of Wisconsin Medical School, Madison 53706, USA.
Dev Dyn. 1995 Apr;202(4):343-53. doi: 10.1002/aja.1002020404.
FGF-2 protein is present in the ectoderm and mesoderm of the developing chick limb bud. Its importance has been shown by the ability of ectopically applied FGF-2 to replace the apical ectodermal ridge, allowing complete outgrowth and subsequent pattern formation of the limb bud. The first goal of this study was to determine whether FGF-2 mRNA was present in the same ectodermal and mesodermal regions of the chick embryo as FGF-2 protein. FGF-2 also has an antisense message that is convergently transcribed from the opposite DNA strand (Kimelman and Kirschner [1989] Cell 59:687-696; Volk et al. [1989] EMBO J. 8:2983-2988). The second goal was to demonstrate the expression and distribution of the antisense message. Using RNAse protection assays we detected a full length protected fragment that corresponds to chick embryo FGF-2 mRNA, and a partially protected fragment that corresponds to the antisense message. We used in situ hybridization to show that FGF-2 mRNA was present in the ectoderm and subjacent mesoderm of the chick wing bud. FGF-2 mRNA was also present in body ectoderm and undifferentiated mesoderm throughout the embryo, and in muscle cells, dorsal neural tube, and mesonephros. In situ hybridization also revealed evidence for the presence of the natural antisense message in the embryo in most, but not all, of the same regions as the FGF-2 mRNA. FGF-2 mRNA and its antisense message colocalized in undifferentiated limb mesoderm; however, antisense message was not detected in differentiated muscle or cartilage. It is important to note that FGF-2 mRNA was always present in the mesonephros but that the antisense message was never observed in the mesonephros, thereby providing an internal control for non-specific signal. Although little is known about its function, Kimelman and Kirschner ([1989] Cell 59: 687-696) proposed that the antisense message may increase turnover of FGF-2 mRNA. When we compared the in situ hybridization data of both mRNAs with levels of FGF-2 protein (Savage et al. [1994] Dev. Dyn. 198:159-170), interesting tissue specific patterns emerged that support this hypothesis.
FGF-2蛋白存在于发育中的鸡胚肢体芽的外胚层和中胚层中。异位应用FGF-2能够替代顶端外胚层嵴,使肢体芽完全生长并随后形成模式,这已表明了其重要性。本研究的首要目标是确定鸡胚的外胚层和中胚层区域中是否存在与FGF-2蛋白相同的FGF-2 mRNA。FGF-2还有一条反义信息,它从相反的DNA链反向转录而来(Kimelman和Kirschner [1989]《细胞》59:687 - 696;Volk等人[1989]《欧洲分子生物学组织杂志》8:2983 - 2988)。第二个目标是证明反义信息的表达和分布。使用RNA酶保护分析,我们检测到一个与鸡胚FGF-2 mRNA相对应的全长受保护片段,以及一个与反义信息相对应的部分受保护片段。我们使用原位杂交来显示FGF-2 mRNA存在于鸡胚翅芽的外胚层和相邻中胚层中。FGF-2 mRNA也存在于整个胚胎的体壁外胚层和未分化的中胚层中,以及肌肉细胞、背侧神经管和中肾中。原位杂交还揭示了在胚胎中,在与FGF-2 mRNA大部分(但并非全部)相同的区域存在天然反义信息的证据。FGF-2 mRNA及其反义信息在未分化的肢体中胚层中共定位;然而,在分化的肌肉或软骨中未检测到反义信息。需要注意的是,FGF-2 mRNA始终存在于中肾中,但在中肾中从未观察到反义信息,从而为非特异性信号提供了内部对照。尽管对其功能了解甚少,但Kimelman和Kirschner([1989]《细胞》59:687 - 696)提出反义信息可能会增加FGF-2 mRNA的周转。当我们将两种mRNA的原位杂交数据与FGF-2蛋白水平(Savage等人[1994]《发育动力学》198:159 - 170)进行比较时,出现了有趣的组织特异性模式,支持了这一假设。