Suppr超能文献

利用风险预测来识别中间护理单元的候选对象。对重症监护利用和成本的影响。

The use of risk predictions to identify candidates for intermediate care units. Implications for intensive care utilization and cost.

作者信息

Zimmerman J E, Wagner D P, Knaus W A, Williams J F, Kolakowski D, Draper E A

机构信息

Department of Anesthesiology, George Washington University Medical Center, Washington, DC 20037, USA.

出版信息

Chest. 1995 Aug;108(2):490-9. doi: 10.1378/chest.108.2.490.

Abstract

OBJECTIVE

To develop a predictive equation that estimates the probability of life-supporting therapy among ICU monitor admissions and to explore its potential for reducing cost and improving ICU utilization.

DESIGN

Prospective inception cohort analysis.

PARTICIPANTS

Forty-two ICUs in 40 US hospitals with more than 200 beds and a consecutive sample of 17,440 ICU admissions.

INTERVENTIONS

A multivariate equation was developed to estimate the probability of life support for ICU monitoring admissions during an entire ICU stay.

MEASUREMENTS

Demographic, physiologic, and treatment information obtained during the first 24 h in the ICU and over the first 7 ICU days.

RESULTS

The most important determinants of subsequent risk for life-supporting (active) treatment were diagnosis, the acute physiology score of APACHE III, age, operative status, and the patient's location and hospital length of stay before ICU admission. Among 8,040 ICU monitoring admissions, 6,180 (76.8%) had a low (< 10%) risk for receiving active treatment during the ICU stay; 95.6% received no subsequent active treatment. Review of outcomes and the type and amount of therapy received suggest that most low-risk ICU monitor admissions could be safely cared for in an intermediate care setting.

CONCLUSION

Objective predictions can accurately identify groups of ICU admissions who are at a low risk for receiving life support. This capability can be used to assess ICU resource use and develop strategies for providing graded critical care services at a reduced cost.

摘要

目的

建立一个预测方程,用于估计重症监护病房(ICU)监测入院患者接受维持生命治疗的概率,并探讨其在降低成本和提高ICU利用率方面的潜力。

设计

前瞻性队列分析。

参与者

美国40家拥有200多张床位的医院中的42个ICU,以及连续抽取的17440例ICU入院患者样本。

干预措施

开发一个多变量方程,以估计整个ICU住院期间ICU监测入院患者接受生命支持的概率。

测量指标

在ICU的头24小时以及头7个ICU日期间获得的人口统计学、生理学和治疗信息。

结果

后续接受维持生命(积极)治疗风险的最重要决定因素是诊断、急性生理学与慢性健康状况评分系统(APACHE)III的急性生理学评分、年龄、手术状态,以及患者在ICU入院前的所在科室和住院时间。在8040例ICU监测入院患者中,6180例(76.8%)在ICU住院期间接受积极治疗的风险较低(<10%);95.6%的患者随后未接受积极治疗。对结局以及所接受治疗的类型和数量的回顾表明,大多数低风险的ICU监测入院患者可以在中级护理环境中得到安全护理。

结论

客观预测可以准确识别出接受生命支持风险较低的ICU入院患者群体。这一能力可用于评估ICU资源的使用情况,并制定策略以降低成本提供分级重症护理服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验