Robinson A L, Sextro R G
Indoor Environment Program, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA.
Health Phys. 1995 Sep;69(3):367-77. doi: 10.1097/00004032-199509000-00008.
Measurements of steady-state soil-gas and 222Rn entry rates into two room-sized experimental basement structures were made for a range of structure depressurizations (0-40 Pa) and open floor areas (0-165 x 10(-4) m2). The structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The subslab gravel layer greatly enhances the soil-gas and radon entry rate into the structure. The radon entry rate into the structure with the subslab gravel layer is four times greater than the entry rate into the structure without the gravel layer with an open floor area of 165 x 10(-4) m2; however the ratio increases to 30 for an open floor area of 5.0 x 10(-4) m2. The relationship between open area and soil-gas entry rate is complex. It depends on both the amount and distribution of the open area as well as the permeability of the soil near the opening. The entry rate into the experimental structures is largely determined by the presence or absence of a subslab gravel layer. Therefore open area is a poor indicator of radon and soil-gas entry into the structures. The extension of the soil-gas pressure field created by structure depressurization is a good measure of the radon entry. The measured normalized radon entry rate into both structures has the same linear relationship with the average subslab pressure coupling is an estimate of the extension of the soil-gas pressure field. A three-dimensional finite-difference model correctly predicts the effect of a subslab gravel layer and different open area configurations on radon and soil-gas entry rate; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.
针对一系列结构降压(0 - 40帕)和开放地面面积(0 - 165×10⁻⁴平方米)的情况,对两个房间大小的实验性地下室结构进行了稳态土壤气体和²²²Rn进入速率的测量。这两个结构完全相同,只是其中一个的楼板直接位于原生土壤上,而另一个的楼板位于高渗透性砾石层上。楼板下的砾石层极大地提高了土壤气体和氡进入结构的速率。对于开放地面面积为165×10⁻⁴平方米的情况,有楼板下砾石层的结构中氡的进入速率比没有砾石层的结构的进入速率大四倍;然而,对于开放地面面积为5.0×10⁻⁴平方米的情况,该比例增加到30。开放面积与土壤气体进入速率之间的关系很复杂。它既取决于开放面积的数量和分布,也取决于开口附近土壤的渗透性。进入实验结构的速率在很大程度上取决于楼板下是否有砾石层。因此,开放面积并不是氡和土壤气体进入结构的良好指标。结构降压产生的土壤气体压力场的扩展是氡进入的一个良好度量。测量得到的进入两个结构的归一化氡进入速率与平均楼板下压力具有相同的线性关系,耦合是土壤气体压力场扩展的一个估计值。一个三维有限差分模型正确地预测了楼板下砾石层和不同开放面积配置对氡和土壤气体进入速率的影响;然而,该模型对每个结构的绝对进入速率预测低了1.5倍。