Suppr超能文献

一种音高感知的频谱网络模型。

A spectral network model of pitch perception.

作者信息

Cohen M A, Grossberg S, Wyse L L

机构信息

Center for Adaptive Systems, Boston University, Massachusetts 02215, USA.

出版信息

J Acoust Soc Am. 1995 Aug;98(2 Pt 1):862-79. doi: 10.1121/1.413512.

Abstract

A model of pitch perception, called the spatial pitch network or SPINET model, is developed and analyzed. The model neurally instantiates ideas from the spectral pitch modeling literature and joins them to basic neural network signal processing designs to stimulate a broader range of perceptual pitch data than previous spectral models. The components of the model are interpreted as peripheral mechanical and neural processing stages, which are capable of being incorporated into a larger network architecture for separating multiple sound sources in the environment. The core of the new model transforms a spectral representation of an acoustic source into a spatial distribution of pitch strengths. The SPINET model uses a weighted "harmonic sieve" whereby the strength of activation of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch perception data involving mistuned components, shifted harmonics, and various types of continuous spectra including rippled noise. It is shown how the weighting functions produce the dominance region, how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the model helps to produce noise suppression, partial masking, and edge pitch. Finally, it is shown how peripheral filtering and short-term energy measurements produce a model pitch estimate that is sensitive to certain component phase relationships.

摘要

一种名为空间音高网络或SPINET模型的音高感知模型被开发并进行了分析。该模型从神经层面实例化了频谱音高建模文献中的观点,并将它们与基本的神经网络信号处理设计相结合,以激发比以往频谱模型更广泛的感知音高数据。该模型的组件被解释为外周机械和神经处理阶段,它们能够被纳入一个更大的网络架构中,用于分离环境中的多个声源。新模型的核心将声源的频谱表示转换为音高强度的空间分布。SPINET模型使用加权的“谐波筛”,其中给定音高的激活强度取决于标称音高值谐波周围狭窄区域的加权和,并且较高谐波对音高的贡献小于较低谐波。适当选择的谐波加权函数能够对涉及失谐分量、谐波移位以及包括波纹噪声在内的各种类型连续频谱的音高感知数据进行计算机模拟。展示了加权函数如何产生优势区域,它们如何响应模糊刺激导致音高的八度移位,以及它们如何在不使用注意力机制来限制音高选择的情况下,响应八度间隔的谢泼德音调复合体和多伊奇三全音而产生一个音高区域。模型中的中心-外周网络有助于产生噪声抑制、部分掩蔽和边缘音高。最后,展示了外周滤波和短期能量测量如何产生对某些分量相位关系敏感的模型音高估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验