Muslin E H, Li D, Stevens F J, Donnelly M, Schiffer M, Anderson L E
Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
Biophys J. 1995 Jun;68(6):2218-23. doi: 10.1016/S0006-3495(95)80430-3.
Light-dependent reduction of cystine disulfide bonds results in activation of several of the enzymes of photosynthetic carbon metabolism within the chloroplast. We have modeled the tertiary structure of four of these light-activated enzymes, namely NADP-linked malate dehydrogenase, glyceraldehyde-3-P dehydrogenase, fructosebisphosphatase, and sedoheptulosebisphosphatase, and identified cysteines in each enzyme that be expected to form inactivating disulfide bonds (Li, D., F. J. Stevens, M. Schiffer, and L. E. Anderson, 1994. Biophys. J. 67:29-35). We have now converted two residues in the Escherichia coli NAD-linked malate dehydrogenase to cysteines and produced a redox-sensitive enzyme. Oxidation of domain-locking cysteine residues in the mutant enzyme clearly mimics dark inactivation of the redox-sensitive chloroplast dehydrogenase. This result is completely consistent with our proposed mechanism.
依赖光的胱氨酸二硫键还原导致叶绿体中几种光合碳代谢酶的激活。我们对其中四种光激活酶的三级结构进行了建模,即与NADP相关的苹果酸脱氢酶、甘油醛-3-磷酸脱氢酶、果糖双磷酸酶和景天庚酮糖双磷酸酶,并确定了每种酶中预期会形成失活二硫键的半胱氨酸(李,D.,F.J.史蒂文斯,M.希弗,和L.E.安德森,1994年。《生物物理杂志》67:29 - 35)。我们现在已将大肠杆菌中与NAD相关的苹果酸脱氢酶中的两个残基转化为半胱氨酸,并产生了一种对氧化还原敏感的酶。突变酶中结构域锁定半胱氨酸残基的氧化明显模拟了对氧化还原敏感的叶绿体脱氢酶的暗失活。这一结果与我们提出的机制完全一致。