Offner S, Pfeifer F
Max-Planck-Institut für Biochemie, Martinsried, Germany.
Mol Microbiol. 1995 Apr;16(1):9-19. doi: 10.1111/j.1365-2958.1995.tb02387.x.
Gas-vesicle (Vac) synthesis in Halobacterium salinarium PHH1 involves the expression of the p-vac region consisting of 14 different gvp genes that are arranged in two clusters: p-gvpACNO and, oppositely oriented, p-gvpDEFGHIJKLM. The latter cluster of genes is transcribed as two units: p-gvpDE and p-gvpF-M. The 5'-terminus of the p-gvpF-M mRNA was located 169 nucleotides upstream of p-gvpF within p-gvpE. The p-gvpG and p-gvpK gene was expressed in Escherichia coli and antibodies to proteins obtained were raised in rabbits. Both proteins could be detected in halobacterial cell lysates; in gas-vesicle preparations, however, neither GvpG nor GvpK could be found. The requirement for single p-gvp gene expression for gas-vesicle synthesis was determined by transformation experiments using the Vac- species Haloferax volcanii as recipient. Construct delta A containing all p-gvp genes except for p-gvpA, encoding the major gas-vesicle structural protein, produced Vac- transformants, but the addition of p-gvpA on a second vector restored gas-vesicle synthesis to wild-type level (Vac++). Similarly, double transformants containing p-gvpD-M plus p-gvpACNO, or p-gvpG-M (fused to the promoter of the halobacterial ferredoxin gene for expression) plus p-gvpFED-ACNO were Vac++. Transformants containing the p-vac region either lacking gvpA, gvpF, or gvpGHI were Vac-, indicating the absolute requirement of these gvp genes (or at least one in the case of gvpGHI) for gas-vesicle formation. Double transformants containing the constructs p-gvpF-M plus p-gvpACNO (delta DE) accumulated gas vesicles (Vac+) but synthesized fewer than the wild type, showing that the p-gvpDE genes are not necessary for gas-vesicle assembly. A repressor function affecting the synthesis of the p-gvpF-M mRNA could be suggested for p-gvpD and the 5'-region of its mRNA.
盐生盐杆菌PHH1中的气体囊泡(Vac)合成涉及p-vac区域的表达,该区域由14个不同的gvp基因组成,这些基因排列成两个簇:p-gvpACNO和方向相反的p-gvpDEFGHIJKLM。后一个基因簇转录为两个单元:p-gvpDE和p-gvpF-M。p-gvpF-M mRNA的5'末端位于p-gvpE中p-gvpF上游169个核苷酸处。p-gvpG和p-gvpK基因在大肠杆菌中表达,并在兔中产生针对所得蛋白质的抗体。两种蛋白质都可以在嗜盐细菌细胞裂解物中检测到;然而,在气体囊泡制剂中,既没有发现GvpG也没有发现GvpK。使用无Vac的沃氏嗜盐菌作为受体,通过转化实验确定了气体囊泡合成对单个p-gvp基因表达的需求。构建体delta A包含除p-gvpA之外的所有p-gvp基因,p-gvpA编码主要的气体囊泡结构蛋白,产生了无Vac的转化体,但在第二个载体上添加p-gvpA可将气体囊泡合成恢复到野生型水平(Vac++)。同样,包含p-gvpD-M加p-gvpACNO或p-gvpG-M(与嗜盐细菌铁氧化还原蛋白基因的启动子融合以进行表达)加p-gvpFED-ACNO的双转化体是Vac++。含有缺少gvpA、gvpF或gvpGHI的p-vac区域的转化体是无Vac的,这表明这些gvp基因(或至少gvpGHI中的一个)对于气体囊泡形成是绝对必需的。包含构建体p-gvpF-M加p-gvpACNO(delta DE)的双转化体积聚了气体囊泡(Vac+),但合成的气体囊泡比野生型少,这表明p-gvpDE基因对于气体囊泡组装不是必需 的。可以推测p-gvpD及其mRNA的5'区域具有影响p-gvpF-M mRNA合成的阻遏功能。