Suppr超能文献

将决策树技术与对福尔根染色细胞核进行计算机辅助显微镜分析相结合,以评估脂肪和平滑肌肿瘤的侵袭性。

The combination of a decision tree technique with the computer-assisted microscope analysis of Feulgen-stained nuclei to assess aggressiveness in lipomatous and smooth muscle tumors.

作者信息

Decaestecker C, Remmelink M, Camby I, Salmon I, Goldschmidtf D, Van Ham P, Pasteels J L, Kiss R

机构信息

Institute of Interdisciplinary Research and Development in Artificial Intelligence (I.R.I.D.I.A.), Université Libre de Bruxelles, Belgium.

出版信息

Anticancer Res. 1995 Jul-Aug;15(4):1311-7.

PMID:7654014
Abstract

The present study describes a computer-assisted methodology whose purpose is to reduce the degree of subjectivity in the diagnosis of soft tissue tumors. This methodology associates three complementary techniques, namely digital cell image analysis, the discretisation of numerical data and a Decision Tree technique (DT). The first technique relies on the use of the digital cell image analysis of Feulgen-stained nuclei, a technique which makes possible a quantitative and thus objective description of nuclei with the help of 24 numerical parameters (15 morphonuclear and 9 DNA content- (ploidy level and proliferation activity) related). The second technique transforms each numerical parameter into an ordinal one with a small number of values (2 to 4) so that only the relevant physical significance of the parameters is retained. The Decision Tree technique generates classification rules on the basis of the discretised parameters quoted above. This methodology was applied to 53 human soft tissue tumors which included 26 lipomatous tumors (13 malignant liposarcomas and 13 benign lipomas) and 27 smooth muscle tumors (11 malignant leiomyosarcomas and 16 benign leiomyomas). The results show that a distinction between benign (lipoma) and malignant (liposarcoma) lipomatous tumors can easily be made by means of simple logical rules depending on only four discretised cytological parameters (two ploidy- and two morphonuclear-related). In contrast, no stable or predictive characterisation can be obtained with respect to the difference between leiomyosarcomas and the leiomyomas. Hence, while lipomas and liposarcomas appeared to be two completely distinct biological entities, leiomyomas and leiomyosarcomas seem to involve a continuous biological process.

摘要

本研究描述了一种计算机辅助方法,其目的是降低软组织肿瘤诊断中的主观程度。该方法结合了三种互补技术,即数字细胞图像分析、数值数据离散化和决策树技术(DT)。第一种技术依赖于对福尔根染色细胞核进行数字细胞图像分析,该技术借助24个数值参数(15个形态核参数和9个与DNA含量(倍性水平和增殖活性)相关的参数),对细胞核进行定量从而客观的描述。第二种技术将每个数值参数转换为具有少量值(2至4个)的有序参数,以便仅保留参数的相关物理意义。决策树技术根据上述离散化参数生成分类规则。该方法应用于53例人类软组织肿瘤,其中包括26例脂肪瘤性肿瘤(13例恶性脂肪肉瘤和13例良性脂肪瘤)和27例平滑肌肿瘤(11例恶性平滑肌肉瘤和16例良性平滑肌瘤)。结果表明,根据仅四个离散化的细胞学参数(两个与倍性相关和两个与形态核相关),通过简单的逻辑规则就可以轻松区分良性(脂肪瘤)和恶性(脂肪肉瘤)脂肪瘤性肿瘤。相比之下,关于平滑肌肉瘤和平滑肌瘤之间的差异,无法获得稳定或可预测的特征描述。因此,虽然脂肪瘤和脂肪肉瘤似乎是两个完全不同的生物学实体,但平滑肌瘤和平滑肌肉瘤似乎涉及一个连续的生物学过程。

相似文献

4
Methodological aspects of using decision trees to characterise leiomyomatous tumors.
Cytometry. 1996 May 1;24(1):83-92. doi: 10.1002/(SICI)1097-0320(19960501)24:1<83::AID-CYTO10>3.0.CO;2-R.
5
[Subfascial lipomatous tumors: management in a series of 37 consecutive cases].
Rev Chir Orthop Reparatrice Appar Mot. 2001 Oct;87(6):585-95.
9
[Primary soft tissue tumors of the retroperitoneal space].
Zentralbl Allg Pathol. 1983;127(3-4):195-205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验